首页> 外文期刊>Acta astronautica >Mechanism analysis of Magnetohydrodynamic heat shield system and optimization of externally applied magnetic field
【24h】

Mechanism analysis of Magnetohydrodynamic heat shield system and optimization of externally applied magnetic field

机译:磁流体动力热屏蔽系统的机理分析及外加磁场的优化

获取原文
获取原文并翻译 | 示例
           

摘要

As a novel thermal protection technique for hypersonic vehicles, Magnetohydrodynamic (MHD) heat shield system has been proved to be of great intrinsic value in the hypersonic field. In order to analyze the thermal protection mechanisms of such a system, a physical model is constructed for analyzing the effect of the Lorentz force components in the counter and normal directions. With a series of numerical simulations, the dominating Lorentz force components are analyzed for the MHD heat flux mitigation in different regions of a typical reentry vehicle. Then, a novel magnetic field with variable included angle between magnetic induction line and streamline is designed, which significantly improves the performance of MHD thermal protection in the stagnation and shoulder areas. After that, the relationships between MHD shock control and MHD thermal protection are investigated, based on which the magnetic field above is secondarily optimized obtaining better performances of both shock control and thermal protection. Results show that the MHD thermal protection is mainly determined by the Lorentz force's effect on the boundary layer. From the stagnation to the shoulder region, the flow deceleration effect of the counter-flow component is weakened while the flow deflection effect of the normal component is enhanced. Moreover, there is no obviously positive correlation between the MHD shock control and thermal protection. But once a good Lorentz force's effect on the boundary layer is guaranteed, the thermal protection performance can be further improved with an enlarged shock stand-off distance by strengthening the counter-flow Lorentz force right after shock.
机译:作为高超音速飞行器的一种新型热保护技术,磁流体动力(MHD)隔热屏系统已被证明在高超音速领域具有重要的内在价值。为了分析这种系统的热保护机制,构建了一个物理模型来分析洛伦兹力分量在反方向和法向方向上的作用。通过一系列数值模拟,分析了主要的洛伦兹力分量,以减轻典型再入车辆不同区域的MHD热通量。然后,设计了一种新的磁场,该磁场在磁感应线和流线之间具有可变的夹角,从而显着提高了在停滞和肩部区域的MHD热保护性能。之后,研究了MHD冲击控制与MHD热保护之间的关系,在此基础上,对上述磁场进行了二次优化,从而获得了更好的冲击控制和热保护性能。结果表明,MHD热保护主要取决于洛伦兹力对边界层的影响。从停滞到肩部区域,逆流分量的流减速效果减弱,而正常分量的流偏转效果增强。此外,MHD冲击控制与热保护之间没有明显的正相关关系。但是,一旦确保了对边界层的良好的洛伦兹力效果,就可以通过在冲击后立即增强逆流洛伦兹力来进一步提高热保护性能,并增大冲击距离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号