首页> 外文期刊>Bioenergy research >Incorporating Uncertainty into a Life Cycle Assessment (LCA) Model of Short-Rotation Willow Biomass (Salix spp.) Crops
【24h】

Incorporating Uncertainty into a Life Cycle Assessment (LCA) Model of Short-Rotation Willow Biomass (Salix spp.) Crops

机译:将不确定性纳入短轮柳生物量(Salix spp。)作物的生命周期评估(LCA)模型中

获取原文
获取原文并翻译 | 示例
           

摘要

To estimate fossil fuel demand and greenhouse gas emissions associated with short-rotation willow (Salix spp.) crops in New York State, we constructed a life cycle assessment model capable of estimating point values and measures of variability for a number of key processes across eight management scenarios. The system used 445.0 to 1,052.4 MJ of fossil energy per oven-dry tonne (odt) of delivered willow biomass, resulting in a net energy balance of 18.3:1 to 43.4:1. The largest fraction of the energy demand across all scenarios was driven by the use of diesel fuels. The largest proportion of diesel fuel was associated with harvesting and delivery of willow chips seven times on 3-year rotations over the life of the crop. Similar patterns were found for greenhouse gas emissions across all scenarios, as fossil fuel use served as the biggest source of emissions in the system. Carbon sequestration in the belowground portion of the willow system provided a large carbon sink that more than compensated for carbon emissions across all scenarios, resulting in final greenhouse gas balances of −138.4 to −52.9 kg CO2 eq. per odt biomass. The subsequent uncertainty analyses revealed that variability associated with data on willow yield, litterfall, and belowground biomass eliminated some of the differences between the tested scenarios. Even with the inclusion of uncertainty analysis, the willow system was still a carbon sequestration system after a single crop cycle (seven 3-year rotations) in all eight scenarios. A better understanding and quantification of factors that drive the variability in the biological portions of the system is necessary to produce more precise estimates of the emissions and energy performance of short-rotation woody crops.
机译:为了估算纽约州与短轮柳(Salix spp。)作物相关的化石燃料需求和温室气体排放,我们构建了一个生命周期评估模型,该模型能够估算八个关键过程中多个关键过程的点值和变异性度量管理方案。该系统每交付的干燥柳树生物量(odt)使用445.0至1,052.4 MJ化石能源,产生的净能量平衡为18.3:1至43.4:1。在所有方案中,最大的能源需求是由使用柴油驱动的。在农作物的整个生命周期中,每3年轮换7次,最大比例的柴油与柳叶屑的收获和输送有关。在所有情况下,温室气体的排放都有类似的模式,因为化石燃料的使用是系统中最大的排放源。柳树系统地下部分的碳固存提供了一个大的碳汇,在所有情况下都可以补偿碳排放,最终导致最终温室气体平衡为-138.4至-52.9千克二氧化碳当量。每种生物量。随后的不确定性分析表明,与柳树产量,凋落物和地下生物量数据相关的变异性消除了所测试情景之间的某些差异。即使包括不确定性分析,在所有八个方案中,单次作物循环(七个三年轮作)之后,柳树系统仍然是碳固存系统。必须对驱动系统生物部分可变性的因素有更好的理解和量化,才能对短轮伐木本作物的排放和能源绩效产生更精确的估计。

著录项

  • 来源
    《Bioenergy research》 |2014年第1期|48-59|共12页
  • 作者单位

    1.Department of Forest and Natural Resources Management SUNY College of Environmental Science and Forestry 1 Forestry Drive Syracuse NY 13210 USA;

    1.Department of Forest and Natural Resources Management SUNY College of Environmental Science and Forestry 1 Forestry Drive Syracuse NY 13210 USA;

    1.Department of Forest and Natural Resources Management SUNY College of Environmental Science and Forestry 1 Forestry Drive Syracuse NY 13210 USA;

    2.Leonard Johnson and Associates 1205 Kamiaken Street Moscow ID 83843 USA;

    3.Woodlife Environmental Consultants LLC 8200 NW Chaparral Drive Corvallis OR 97330 USA;

    4.College of the Environment University of Washington Box 352100 Seattle WA 98195 USA;

    4.College of the Environment University of Washington Box 352100 Seattle WA 98195 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Bioenergy Biomass Short-rotation woody crops Life cycle analysis Uncertainty analysis;

    机译:生物能源生物质短轮伐木本植物生命周期分析不确定性分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号