...
首页> 外文期刊>Climate dynamics >The interplay of thermodynamics and ocean dynamics during ENSO growth phase
【24h】

The interplay of thermodynamics and ocean dynamics during ENSO growth phase

机译:Enso生长阶段热力学和海洋动力学的相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

The growth of El Nino/Southern Oscillation (ENSO) events is determined by the balance between ocean dynamics and thermodynamics. Here we quantify the contribution of the thermodynamic feedbacks to the sea surface temperature (SST) change during ENSO growth phase by integrating the atmospheric heat fluxes over the temporarily and spatially varying mixed layer to derive an offline "slab ocean" SST. The SST change due to ocean dynamics is estimated as the residual with respect to the total SST change. In observations, 1 K SST change in the Nino3.4 region is composed of an ocean dynamical SST forcing of + 2.6 K and a thermodynamic damping of - 1.6 K, the latter mainly by the shortwave-SST (- 0.9 K) and latent heat flux-SST feedback (- 0.7 K). Most climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) underestimate the SST change due to both ocean dynamics and net surface heat fluxes, revealing an error compensation between a too weak forcing by ocean dynamics and a too weak damping by atmospheric heat fluxes. In half of the CMIP5 models investigated in this study, the shortwave-SST feedback erroneously acts as an amplifying feedback over the eastern equatorial Pacific, resulting in a hybrid of ocean-driven and shortwave-driven ENSO dynamics. Further, the phase locking and asymmetry of ENSO is investigated in the CMIP5 model ensemble. The climate models with stronger atmospheric feedbacks tend to simulate a more realistic seasonality and asymmetry of the heat flux feedbacks, and they exhibit more realistic phase locking and asymmetry of ENSO. Moreover, the almost linear latent heat flux feedback contributes to ENSO asymmetry in the far eastern equatorial Pacific through an asymmetry in the mixed layer depth. This study suggests that the dynamic and thermodynamic ENSO feedbacks and their seasonality and asymmetries are important metrics to consider for improving ENSO representation in climate models.
机译:EL Nino / Southern振荡(ENSO)事件的增长由海洋动力学和热力学之间的平衡决定。在这里,我们通过在临时和空间不同的混合层上积分大气热通量来量化热力学反馈在ENSO生长期间改变热力学反馈对海表面温度(SST)变化的贡献,以导出离线“平板海洋”SST。由于海洋动态引起的SST变化是关于总SST变化的残差。在观察中,Nino3.4区域中的1 k SST变化由海洋动态SST强制组成+ 2.6 k和热力学阻尼 - 1.6 k,后者主要由短波SST( - 0.9 k)和潜热Flux-SST反馈( - 0.7 k)。来自耦合模型的大多数气候模型从耦合型号相互比较项目阶段5(CMIP5)低估了由于海洋动力学和净表面热量通量引起的SST变化,揭示了海洋动力学的太弱迫使迫使的误差补偿和大气热通量太弱的阻尼。在本研究中调查的CMIP5模型的一半中,短波SST反馈错误地误入为东部赤道太平洋的放大反馈,导致海洋驱动和短波驱动的ENSO动态的混合。此外,在CMIP5模型集合中研究了ENSO的相位锁定和不对称性。具有较强的大气反馈的气候模型倾向于模拟传热反馈的更现实的季节性和不对称性,并且它们具有更现实的阶段锁定和enso的不对称性。此外,几乎线性潜热通量反馈通过混合层深度的不对称有助于远东赤道太平洋的ENSO不对称。本研究表明,动态和热力学enso反馈及其季节性和不对称是重要的指标,以考虑改善气候模型中的ENSO表示。

著录项

  • 来源
    《Climate dynamics》 |2021年第6期|1681-1697|共17页
  • 作者单位

    GEOMAR Helmholtz Ctr Ocean Res Kiel Dusternbrooker Weg 20 D-24105 Kiel Germany;

    GEOMAR Helmholtz Ctr Ocean Res Kiel Dusternbrooker Weg 20 D-24105 Kiel Germany|SINTEF Ocean AS Dept Environm & New Resources Trondheim Norway;

    GEOMAR Helmholtz Ctr Ocean Res Kiel Dusternbrooker Weg 20 D-24105 Kiel Germany|Christian Albrechts Univ Kiel Fac Math & Nat Sci D-24105 Kiel Germany;

    GEOMAR Helmholtz Ctr Ocean Res Kiel Dusternbrooker Weg 20 D-24105 Kiel Germany|Christian Albrechts Univ Kiel Fac Math & Nat Sci D-24105 Kiel Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号