...
首页> 外文期刊>Cold regions science and technology >Equifinality and sensitivity in freezing and thawing simulations of laboratory and in situ data
【24h】

Equifinality and sensitivity in freezing and thawing simulations of laboratory and in situ data

机译:实验室和原位数据的冻融模拟中的平衡性和敏感性

获取原文
获取原文并翻译 | 示例
           

摘要

Numerical models of soil freezing and thawing are being increasingly used in, e.g., agriculture, forestry, ecology and civil engineering. This study was conducted to 1) elucidate the sensitivity in simulation output to the variability of model parameters for the hydrodynamic model Hydras-1D and 2) investigate how two operational considerations in the model setup, groundwater level and subgrade material (soil texture), affect indicators of road accessibility in northern Sweden. The analysis was carried out by applying the generalized likelihood uncertainty estimation (GLUE) procedure when simulating laboratory measurements of freezing cylinders and by a more conventional sensitivity analysis, varying one parameter at a time, using road surface temperatures measured during nearly 1 year as upper boundary condition. For the simulation of the laboratory experiment, it was found that, although the thermal conductivity scaling factor, λ_f , and the convective heat transfer coefficient, h_c, most strongly affected the output, no parameter was redundant for the given problem. The frost depth was most sensitive to changes in λ_f and λ_f, while the water content in the unfrozen zone was most sensitive to changes in the hydraulic conductivity impedence parameter Ω. For the 1-year road simulation, the frost depth was larger for sand than for the loam and silt subgrades; the thawing period was shortest for sand and longest for the silt subgrade; and the silt subgrade allowed for the largest frost-induced upward water flow. Thus, among the subgrades studied, roads built on silt show the potential of being most frost-susceptible as a consequence of having the largest elevated water content in combination with the longest time of thawing. The study performed indicates that the model can provide information of interest from an operational perspective, allowing for local predictions important in the road construction and maintenance process.
机译:土壤冻结和解冻的数值模型正越来越多地用于例如农业,林业,生态学和土木工程。进行这项研究的目的是:1)阐明模拟输出对水动力模型Hydras-1D的模型参数的敏感性,以及2)研究模型设置中的两个操作注意事项(地下水位和路基材料(土壤质地))如何影响瑞典北部的道路通行性指标。通过在模拟冷冻缸的实验室测量时应用广义似然不确定性估计(GLUE)程序进行分析,并通过更常规的灵敏度分析,一次更改一个参数,将近1年内测得的路面温度作为上限健康)状况。对于实验室实验的仿真,发现尽管导热系数比例因子λ_f和对流传热系数h_c对输出的影响最大,但对于给定的问题,没有参数是多余的。霜冻深度对λ_f和λ_f的变化最敏感,而未冻结区的水含量对水力传导率阻抗参数Ω的变化最敏感。在为期1年的道路模拟中,沙的霜冻深度大于壤土和粉土路基。沙土的融化期最短,粉质路基的融化期最长。淤泥路基允许最大的霜冻诱导的向上水流。因此,在所研究的路基中,在粉砂上建造的道路显示出最易受霜冻的可能性,这是因为最大含水量增加以及融化时间最长。进行的研究表明,该模型可以从操作的角度提供感兴趣的信息,从而可以在道路建设和维护过程中进行重要的本地预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号