首页> 外文期刊>Combustion and Flame >Dynamical response of a perfectly premixed flame and limit behavior for high power density systems
【24h】

Dynamical response of a perfectly premixed flame and limit behavior for high power density systems

机译:完美预混火焰的动力响应和高功率密度系统的极限性能

获取原文
获取原文并翻译 | 示例
           

摘要

The interaction between a perfectly premixed flame and an acoustic wave is studied in a 1D configuration. The mathematical framework to represent the flame dynamics is based on a recent work by Chen et al. that accounts for flame displacement in an acoustic field (Chen et al., 2016). An energetic approach is developed to estimate the source terms associated to flame/acoustic interactions. Three main contributions are identified: the flame velocity response, which corresponds to the flame response to upstream velocity perturbations (often modeled by an n v model), the flame pressure response, related to the link between the reactant consumption rate and the local density, and the flame motion contribution, related to the displacement of the heat release rate in an acoustic pressure field. The energetic contributions are evaluated theoretically using different formalisms to make connections with previous work. A focus is made on the limit case corresponding to high frequency/high power density (HF/HPD) configurations. This asymptotic condition is of interest in some practical applications, and a remarkable expression is obtained for the flame contribution in that case. The acoustic source term is expressed simply by the integral of the product between the mean heat release rate and the acoustic energy. A parametric study is carried out on a 1D duct of constant section incorporating a perfectly premixed flame. The spatial structure and frequency of the first mode (which is studied exclusively here) are obtained using a classical decomposition of pressure, velocity and entropy in plane waves and expressing jump and boundary conditions on the amplitudes. The flame energetic contributions are compared to one another and to the growth rate obtained using the classical wave method. The different methods are validated on a wide range of parameters. The particular behavior of systems featuring a high power density is presented. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:以一维配置研究了完美预混火焰和声波之间的相互作用。表示火焰动力学的数学框架基于Chen等人的最新工作。解释了声场中火焰的位移(Chen et al。,2016)。开发了一种能量方法来估计与火焰/声相互作用相关的源项。确定了三个主要贡献:火焰速度响应(对应于对上游速度扰动的火焰响应(通常由nv模型建模),火焰压力响应(与反应物消耗速率与局部密度之间的联系相关),以及火焰运动的贡献,与声压场中放热率的位移有关。理论上使用不同的形式主义来评估精力充沛的贡献,以与先前的工作建立联系。将重点放在与高频/高功率密度(HF / HPD)配置相对应的极限情况下。在某些实际应用中,这种渐近条件是令人关注的,并且在这种情况下,对于火焰的贡献获得了显着的表达。声源项简单地用平均放热率和声能之间的乘积积分表示。在包含完美预混火焰的恒定截面的一维管道上进行了参数研究。第一种模式的空间结构和频率(此处仅进行研究)是使用平面波中压力,速度和熵的经典分解并表示振幅的跳跃和边界条件而获得的。将火焰的能量贡献相互比较,并与使用经典波方法获得的增长率进行比较。在各种参数上验证了不同的方法。介绍了具有高功率密度的系统的特殊行为。 (C)2018年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号