首页> 外文期刊>Combustion and Flame >Critical kinetic uncertainties in modeling hydrogen/carbon monoxide, methane, methanol, formaldehyde, and ethylene combustion
【24h】

Critical kinetic uncertainties in modeling hydrogen/carbon monoxide, methane, methanol, formaldehyde, and ethylene combustion

机译:在模拟氢气/一氧化碳,甲烷,甲醇,甲醛和乙烯燃烧中的关键动力学不确定性

获取原文
获取原文并翻译 | 示例
           

摘要

In view of the critical role of the underlying uncertainties of the reaction model in future progress of combustion chemistry modeling, Foundational Fuel Chemistry Model 1.0 (FFCM-1) was developed with uncertainty minimization against available fundamental combustion data of H2, H2/CO, CH4, CH2O, and C2H6. As a critical feature, FFCM-1 not only reconciles a large body of fundamental combustion data, it also has rigorously evaluated uncertainties for the rate coefficients, the combustion experimental targets used for model optimization and uncertainty minimization, and most importantly, an optimized reaction model with quantified uncertainties. In the present work, the remaining kinetic uncertainties of FFCM-1 are examined using a perfectly stirred reactor (PSR) as the relevant model platform for which reliable experiments under the conditions tested are unavailable. The key questions to address include the level of improvement from model optimization in the prediction uncertainties of PSR residence times at extinction and ignition and the rate coefficients of reactions that must be improved in order to reduce the prediction uncertainties. Computational tests are made for H2/CO, CH2O, CH4, CH3OH and C2H4–air mixtures over the pressure range of 10–100 atm and PSR inlet temperatures that would yield residence times comparable to the time scales typical of fuel combustion in practical combustors. The results show that although model optimization reduces the prediction uncertainties of residence time at extinction and ignition, the remaining uncertainties remain rather large. Key reactions for which reduced rate uncertainties would greatly improve the reaction model quality and accuracy have been identified and discussed in detail.
机译:鉴于反应模型潜在不确定性在燃烧化学建模的未来进展中的关键作用,开发了基础燃料化学模型1.0(FFCM-1),并针对H2,H2 / CO,CH4的可用基本燃烧数据,将不确定性最小化,CH2O和C2H6。作为一项关键功能,FFCM-1不仅调和了大量的基本燃烧数据,而且还严格评估了速率系数的不确定性,用于模型优化和不确定性最小化的燃烧实验目标,最重要的是,优化了反应模型具有量化的不确定性。在目前的工作中,使用完全搅拌反应器(PSR)作为相关模型平台来检查FFCM-1的其余动力学不确定性,在该条件下无法进行可靠的实验。要解决的关键问题包括模型优化对消光和着火时PSR停留时间的预测不确定性的改进程度,以及为减少预测不确定性而必须提高的反应速率系数。针对H2 / CO,CH2O,CH4,CH3OH和C2H4-空气混合物进行了计算测试,压力范围为10-100 atm和PSR入口温度,其停留时间可与实际燃烧器中典型的燃料燃烧时间范围相媲美。结果表明,尽管模型优化减少了熄灭和着火时停留时间的预测不确定性,但其余不确定性仍然很大。已经确定并详细讨论了降低速率不确定性将大大提高反应模型质量和准确性的关键反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号