首页> 外文期刊>Combustion and Flame >Kinetics of plasma assisted pyrolysis and oxidation of ethylene. Part 2: Kinetic modeling studies
【24h】

Kinetics of plasma assisted pyrolysis and oxidation of ethylene. Part 2: Kinetic modeling studies

机译:等离子体辅助乙烯热解和氧化的动力学。第2部分:动力学建模研究

获取原文
获取原文并翻译 | 示例
           

摘要

The kinetics of plasma-assisted pyrolysis and oxidation of ethylene have been numerically investigated. Combining plasma chemistry processes including electron-impact reactions, and reactions of electronically excited species with a comprehensive combustion mechanism, a plasma-assisted kinetic mechanism of ethylene pyrolysis and oxidation has been constructed. To test the accuracy of the constructed mechanism, numerical results were compared to experimental data obtained in a plasma flow reactor, performed under highly diluted conditions in argon at a pressure of 1 atm for temperatures ranging from 520 K to 1250 K. Comparison of plasma-assisted pyrolysis results indicates little discrepancy between the model and experiments. Direct collisional quenching of electronically excited argon by ethylene is responsible for the low temperature enhancement of fuel consumption seen in the plasma-assisted pyrolysis experiments. Hydrocarbon radicals generally undergo addition and recombination reactions to yield several C-3 and C-4 hydrocarbon intermediates. As temperature increases, the plasma effects diminish and the reaction is overtaken by thermal pyrolysis. Comparison of experimental and modeling results for plasma assisted oxidation of ethylene demonstrated relatively good agreement for most major and minor species. However, poor agreement was found for ethylene and acetaldehyde for T < 750 K. In the oxidation system, collisional quenching of excited argon by 0(2) to generate the 0-atom radical pool complemented the plasma-specific fuel dissociation reactions. The plasma was found to have different effects on the oxidation kinetics at different temperatures. At low temperatures, R+0(2) type chemistry (R being a hydrocarbon radical) facilitates the formation of oxygenated species to enhance oxidation by way of formaldehyde. At intermediate temperatures, the formation of hydrocarbon and alcohol intermediates slows the oxidation process relative to the low temperatures. Finally, at high temperatures, plasma chemical reactions are unable to compete against the high temperature chain-branching reactions of the neutral chemistry that dominate and control the overall oxidation process. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:进行了等离子体辅助的乙烯热解和氧化反应的动力学研究。结合包括电子撞击反应在内的等离子体化学过程,以及具有综合燃烧机理的电子激发物种的反应,构建了乙烯热解和氧化的等离子体辅助动力学机制。为了测试所构建机理的准确性,将数值结果与在等离子流反应器中获得的实验数据进行了比较,该实验数据是在高度稀释的条件下于1atm的氩气中于520 K至1250 K的温度下进行的。辅助热解结果表明模型与实验之间几乎没有差异。乙烯对电子激发氩气的直接碰撞猝灭是造成等离子辅助热解实验中燃料消耗量低温增加的原因。烃基通常经历加成和重组反应以产生几种C-3和C-4烃中间体。随着温度升高,等离子体效应减弱,反应被热解所取代。等离子体辅助氧化乙烯的实验结果和模型结果的比较表明,对于大多数主要种类和次要种类,其相对较好的一致性。但是,对于T <750 K,发现乙烯和乙醛的一致性差。在氧化系统中,激发氩被0(2)碰撞猝灭以生成0原子的自由基,补充了特定于等离子体的燃料解离反应。发现等离子体在不同温度下对氧化动力学具有不同的影响。在低温下,R + 0(2)型化学物质(R为烃基)有助于形成氧化物种,从而通过甲醛增强氧化作用。在中间温度下,烃和醇中间体的形成相对于低温减慢了氧化过程。最后,在高温下,等离子体化学反应无法与控制和控制整个氧化过程的中性化学物质的高温链支化反应竞争。 (C)2016年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号