首页> 外文期刊>Combustion Science and Technology >NUMERICAL SIMULATIONS OF FLAT LAMINAR PREMIXED METHANE-AIR FLAMES AT ELEVATED PRESSURE
【24h】

NUMERICAL SIMULATIONS OF FLAT LAMINAR PREMIXED METHANE-AIR FLAMES AT ELEVATED PRESSURE

机译:升压下层流预混甲烷空气焰的数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Two-dimensional axisymmetric simulation of stoichiometric methane-air flames stabilized on flat burners at elevated pressure is reported in the present work. Such flames, in practice, are experimentally obtained using the heat flux method for measurement of laminar burning velocity of fuel-oxidizer mixtures (Bosschaart and de Goey, 2004; Goswami et al, 2013). The method makes use of a burner with a perforated brass burner plate. The dimensions of such a plate play an important role in creating flat flames. The present investigation is focused on studying laminar premixed flame structure numerically at elevated pressure up to 15 bar using a one-step and a detailed chemical reaction mechanism. Three burner plate models (of varying hole diameter and porosity) are used in the simulations for pressures up to 7 bar with a one-step mechanism. The surface area increase of the flame was evaluated based on an isotherm at 900 K and the net reaction rate of methane compared to a flat flame. The comparison of these models shows that the surface area increase can significantly be reduced by choosing a smaller hole diameter and larger porosity. The results of the detailed simulations using an appropriate chemical reaction mechanism up to IS bar using a burner plate model, which is similar to the ones used in experiments (mentioned above), show a nonlinear increase of the flame curvature with elevating pressure. A hole diameter of 0.25 mm and a pitch of 0.29 mm is suggested for a burner plate in such experiments. Flame structure at elevated pressure is also analyzed further based on species profiles obtained.
机译:在目前的工作中,报道了在扁平燃烧器上稳定的化学计量甲烷-空气火焰的二维轴对称模拟。实际上,这种火焰是通过热通量方法通过实验获得的,用于测量燃料-氧化剂混合物的层流燃烧速度(Bosschaart和de Goey,2004; Goswami等,2013)。该方法利用具有穿孔的黄铜燃烧器板的燃烧器。这种板的尺寸在产生平面火焰中起重要作用。本研究的重点是使用一步和详细的化学反应机理,在高达15 bar的高压下,对层流预混火焰结构进行数值研究。在模拟中使用三个燃烧器板模型(具有不同的孔直径和孔隙率),通过一步机制,压力高达7 bar。火焰的表面积增加是基于900 K下的等温线和与平焰相比甲烷的净反应速率来评估的。这些模型的比较表明,通过选择较小的孔径和较大的孔隙率,可以显着减少表面积增加。使用燃烧器板模型,使用适当的化学反应机理,直至IS bar的详细模拟结果与实验(上面提到的实验)相似,结果表明,随着压力的升高,火焰曲率呈非线性增加。在这种实验中,建议燃烧器板的孔直径为0.25 mm,节距为0.29 mm。还根据获得的物质分布图进一步分析了高压下的火焰结构。

著录项

  • 来源
    《Combustion Science and Technology》 |2014年第12期|1447-1459|共13页
  • 作者单位

    Combustion Technology Section, Mechanical Engineering, Eindhoven University of Technology, Den Dolech 2, Eindhoven 5612AZ, The Netherlands;

    Combustion Technology Section, Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands;

    Combustion Technology Section, Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands;

    Division of Combustion Physics, Lund University, Lund, Sweden;

    Combustion Technology Section, Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Elevated pressure; Heat flux method; Laminar burning velocity; Methane combustion;

    机译:压力升高;热通量法;层流燃烧速度甲烷燃烧;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号