...
首页> 外文期刊>IEEE Transactions on Components and Packaging Technologies >Interconnection of Subsystem Reduced-Order Models in the Electrothermal Analysis of Large Systems
【24h】

Interconnection of Subsystem Reduced-Order Models in the Electrothermal Analysis of Large Systems

机译:大型系统电热分析中子系统降序模型的互连

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Heat conduction in an electronic device is commonly modeled as a discretized thermal system (e.g., finite element or finite difference models) that typically uses large matrices for solving complex problems. The large size of electronic-system heat transfer models can be reduced using model reduction methods and the resulting reduced-order models can yield accurate results with far less computational costs. Electronic devices are typically composed of components, like chips, printed circuit boards, and heat sinks that are coupled together. There are two ways of creating reduced-order models for devices that have many coupled components. The first way is to create a single reduced-order model of the entire device. The second way is to interconnect reduced-order models of the components that constitute the device. The second choice (which we call the "reduce then interconnect" approach) allows the heat transfer specialist to perform quick simulations of different architectures of the device by using a library of reduced-order models of the different components that make up the device. However, interconnecting reduced-order models in a straightforward manner can result in unstable behavior. The purpose of this paper is two-fold: creating reduced-order models of the components using a Krylov subspace algorithm and interconnecting the reduced-order models in a stable manner using concepts from control theory. In this paper, we explain the logic behind the "reduce then interconnect" approach, formulate a control-theoretic method for it, and finally exhibit the whole process numerically, by applying it to an example heat conduction problem
机译:电子设备中的热传导通常被建模为离散热系统(例如,有限元或有限差分模型),该系统通常使用大矩阵来解决复杂的问题。可以使用模型缩减方法来缩减电子系统传热模型的大尺寸,并且由此产生的降阶模型可以以更少的计算成本产生准确的结果。电子设备通常由耦合在一起的组件组成,例如芯片,印刷电路板和散热器。有两种方法可以为具有许多耦合组件的设备创建降阶模型。第一种方法是创建整个设备的单个降阶模型。第二种方法是互连构成设备的组件的降序模型。第二种选择(我们称为“先减少再互连”的方法)使传热专家可以通过使用组成设备的不同组件的降阶模型库来快速仿真设备的不同体系结构。但是,以直接方式互连降阶模型可能会导致行为不稳定。本文的目的有两个:使用Krylov子空间算法创建组件的降阶模型,并使用控制理论中的概念以稳定的方式互连降阶模型。在本文中,我们解释了“先减少后再互连”方法背后的逻辑,为此制定了一种控制理论方法,最后通过将其应用于示例热传导问题,以数值方式展示了整个过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号