首页> 外文期刊>Composite Structures >Energy-absorbing mechanisms and crashworthiness design of CFRP multi-cell structures
【24h】

Energy-absorbing mechanisms and crashworthiness design of CFRP multi-cell structures

机译:CFRP多电池结构的能量吸收机制和耐火性设计

获取原文
获取原文并翻译 | 示例
           

摘要

This study aims to investigate crashworthiness and energy-absorbing capacity of CFRP mull-cell structures under the quasi-static axial loading. In the present study, CFRP single-cell and mull-cell tubes are manufactured, and the same overall dimensions and mass for all specimens are guaranteed through allocating different thickness of each side. The crushing process and energy-absorbing capacity of all specimens are experimentally investigated under the quasi-static axial crushing load. According to the experimental results, it is known that the single-cell tube develops unstable local buckling mode, and the mull-cell tubes with two configurations crush progressively. Total energy absorption of the mull-cell tubes are almost 69% higher than that of the single-cell tube. Subsequently, numerical simulations are further conducted to provide additional insights into the underlying energy-absorbing mechanisms of the mull-cell tubes. The numerical results indicate that intralaminar energy is the primary energy-absorbing mechanism for all configurations, and the energy absorbed by each part in the mull-cell tubes are much higher than the corresponding part in the single-cell tube. Based on the validated numerical models, the influences of wall thickness and cells number (n) on crashworthiness characteristics of mull-cell tubes are further investigated by performing a comparative analysis. It is found that the energy-absorbing capacity is slightly increased with raising cells number, and energy-absorbing capacity gradually increases with increasing layer number of inner cross beam. Finally, the CFRP mull-cell tube with n = 3 is further optimized, and as a result SEA is improved by 4.68% from the initial design. This study is expected to provide guideline for crashworthiness design of CFRP multi-cell structures.
机译:本研究旨在调查CFRP Mull-Cell结构在准静态轴向载荷下的耐火性和能量吸收能力。在本研究中,制造CFRP单细胞和母细胞管,并且通过分配每侧的不同厚度,保证所有样本的相同总体尺寸和质量。在准静态轴向破碎负荷下实验研究所有标本的破碎过程和能量吸收能力。根据实验结果,已知单细胞管产生不稳定的局部屈曲模式,以及具有两种配置的母细胞管逐渐压碎。 Mull细胞管的总能量吸收量高于单细胞管的69%。随后,进一步进行数值模拟以提供进入母细胞管的底层能量吸收机制的附加洞察。数值结果表明,腔内能量是所有配置的主要能量吸收机构,并且由母细胞管中的每个部分吸收的能量远高于单细胞管中的相应部分。基于验证的数值模型,通过进行比较分析进一步研究了壁厚和细胞数(n)对Mull细胞管的耐磨性特性的影响。发现能量吸收能力略有增加,随着细胞数量的数量略微增加,并且能量吸收能力随着内横梁的层数的增加而逐渐增加。最后,进一步优化了具有n = 3的CFRP Mull-Cell管,并且由于初始设计,因此随着结果的提高了4.68%。预计本研究将提供CFRP多细胞结构的耐火性设计指南。

著录项

  • 来源
    《Composite Structures》 |2020年第2期|111631.1-111631.17|共17页
  • 作者单位

    Changan Univ Sch Automobile Xian 710064 Shaanxi Peoples R China;

    Changan Univ Sch Automobile Xian 710064 Shaanxi Peoples R China;

    Changan Univ Sch Automobile Xian 710064 Shaanxi Peoples R China;

    Changan Univ Sch Automobile Xian 710064 Shaanxi Peoples R China;

    Changan Univ Sch Automobile Xian 710064 Shaanxi Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-cell structures; CFRP; Energy-absorbing mechanisms; Crashworthiness design;

    机译:多电池结构;CFRP;能量吸收机制;耐火性设计;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号