...
首页> 外文期刊>Atmospheric chemistry and physics >Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase
【24h】

Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase

机译:化学见解,明确的化学反应以及甲基乙二醛和乙二醛在水相中的OH自由基氧化产生的二级有机气溶胶

获取原文
           

摘要

Atmospherically abundant, volatile water-soluble organic compounds formedthrough gas-phase chemistry (e.g., glyoxal (C2), methylglyoxal(C3), and acetic acid) have great potential to form secondary organicaerosol (SOA) via aqueous chemistry in clouds, fogs, and wet aerosols. Thispaper (1) provides chemical insights into aqueous-phase OH-radical-initiatedreactions leading to SOA formation from methylglyoxal and (2) uses this and apreviously published glyoxal mechanism (Lim et al., 2010) to provide SOAyields for use in chemical transport models. Detailed reaction mechanismsincluding peroxy radical chemistry and a full kinetic model for aqueousphotochemistry of acetic acid and methylglyoxal are developed and validatedby comparing simulations with the experimental results from previous studies(Tan et al., 2010, 2012). This new methylglyoxal model is then combined withthe previous glyoxal model (Lim et al., 2010), and is used to simulate theprofiles of products and to estimate SOA yields.At cloud-relevant concentrations (~ 10−6 −~ 10?3 M; Munger et al., 1995) of glyoxal andmethylglyoxal, the major photooxidation products are oxalic acid and pyruvicacid, and simulated SOA yields (by mass) are ~ 120% forglyoxal and ~ 80% for methylglyoxal. During dropletevaporation oligomerization of unreacted methylglyoxal/glyoxal that did notundergo aqueous photooxidation could enhance yields. In wet aerosols, wheretotal dissolved organics are present at much higher concentrations(~ 10 M), the major oxidation products are oligomers formedvia organic radical–radical reactions, and simulated SOA yields (by mass)are ~ 90% for both glyoxal and methylglyoxal. Non-radicalreactions (e.g., with ammonium) could enhance yields.
机译:通过气相化学形成的大气丰富的挥发性水溶性有机化合物(例如乙二醛(C 2 ),甲基乙二醛(C 3 )和乙酸)具有巨大的潜力通过水性化学在云,雾和湿气溶胶中形成二次有机气溶胶(SOA)。本文(1)提供了对由甲基乙二醛形成SOA的水相OH自由基引发的反应的化学见解(2)使用该方法和先前已发表的乙二醛机理(Lim等人,2010)提供了用于化学传递模型的SOA收率。 。通过将模拟结果与先前研究的实验结果进行比较,开发并验证了详细的反应机理,包括过氧自由基化学反应以及乙酸和甲基乙二醛水溶液光化学的完整动力学模型(Tan等,2010,2012)。然后将此新的甲基乙二醛模型与以前的乙二醛模型结合(Lim等人,2010),并用于模拟产品概况并估算SOA产量。 与云有关的浓度(〜10 > -6 -〜10 ?3 M; Munger等,1995),主要的光氧化产物是草酸和丙酮酸,模拟的SOA产量(按质量计)是〜120%的乙二醛和〜80%的乙二醛。在液滴蒸发过程中,未进行水光氧化的未反应甲基乙二醛/乙二醛的低聚可提高收率。在湿气溶胶中,总溶解有机物的浓度要高得多(约10 M),主要的氧化产物是通过有机自由基自由基反应形成的低聚物,乙二醛和甲基乙二醛的模拟SOA收率(质量)均为90%。非自由基反应(例如与铵反应)可以提高收率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号