...
首页> 外文期刊>Atmospheric chemistry and physics >Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase
【24h】

Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase

机译:化学见解,明确的化学反应以及甲基乙二醛和乙二醛在水相中的OH自由基氧化产生的次级有机气溶胶的产率

获取原文
获取原文并翻译 | 示例
           

摘要

Atmospherically abundant, volatile water-soluble organic compounds formed through gas-phase chemistry (e.g., glyoxal (C2), methylglyoxal (C3), and acetic acid) have great potential to form secondary organic aerosol (SOA) via aqueous chemistry in clouds, fogs, and wet aerosols. This paper (1) provides chemical insights into aqueous-phase OH-radical-initiated reactions leading to SOA formation from methylglyoxal and (2) uses this and a previously published glyoxal mechanism (Lim et al., 2010) to provide SOA yields for use in chemical transport models. Detailed reaction mechanisms including peroxy radical chemistry and a full kinetic model for aqueous photochemistry of acetic acid and methylglyoxal are developed and validated by comparing simulations with the experimental results from previous studies (Tan et al., 2010, 2012). This new methylglyoxal model is then combined with the previous glyoxal model (Lim et al., 2010), and is used to simulate the profiles of products and to estimate SOA yields. At cloud-relevant concentrations (~ 10-6 - ~ 10-3 M; Munger et al., 1995) of glyoxal and methylglyoxal, the major photooxidation products are oxalic acid and pyruvic acid, and simulated SOA yields (by mass) are ~ 120% for glyoxal and ~ 80% for methylglyoxal. During droplet evaporation oligomerization of unreacted methylglyoxal/glyoxal that did not undergo aqueous photooxidation could enhance yields. In wet aerosols, where total dissolved organics are present at much higher concentrations (~ 10 M), the major oxidation products are oligomers formed via organic radical-radical reactions, and simulated SOA yields (by mass) are ~ 90% for both glyoxal and methylglyoxal. Non-radical reactions (e.g., with ammonium) could enhance yields.
机译:通过气相化学形成的大气中丰富的挥发性水溶性有机化合物(例如乙二醛(C2),甲基乙二醛(C3)和乙酸)具有很大的潜力,可通过云层,雾中的水性化学形成二次有机气溶胶(SOA)和湿气雾剂。本文(1)提供了对由甲基乙二醛形成SOA的水相OH自由基引发的反应的化学见解(2)使用该方法和先前公开的乙二醛机理(Lim等人,2010)提供使用的SOA收率在化学运输模型中。通过将模拟与先前研究的实验结果进行比较,开发并验证了详细的反应机理,包括过氧自由基化学反应以及乙酸和甲基乙二醛水溶液光化学的完整动力学模型(Tan等,2010,2012)。然后,将这种新的甲基乙二醛模型与先前的乙二醛模型结合起来(Lim等人,2010),并用于模拟产品概况和估算SOA产量。 在与云有关的乙二醛和甲基乙二醛浓度(〜10-6-〜10-3 M; Munger等,1995)下,主要的光氧化产物是草酸和丙酮酸,模拟的SOA产量(质量)乙二醛为〜120%,甲基乙二醛为〜80%。在液滴蒸发过程中,未进行水光氧化的未反应甲基乙二醛/乙二醛的低聚可提高收率。在湿气溶胶中,总溶解有机物的浓度要高得多(约10 M),主要的氧化产物是通过有机自由基自由基反应形成的低聚物,乙二醛和乙二醛的模拟SOA收率(质量)均为约90%。甲基乙二醛。非自由基反应(例如与铵反应)可以提高收率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号