, Remi Monasson4 1 SISSA, Trieste, Italy 2 Kim II Sung Uni'/> Peptidergic signaling in the paraventricular thalamus: Effects on food intake and reward
首页> 外文期刊>IBRO Reports >Peptidergic signaling in the paraventricular thalamus: Effects on food intake and reward
【24h】

Peptidergic signaling in the paraventricular thalamus: Effects on food intake and reward

机译:脑室旁丘脑中的肽能信号:对食物摄入和奖励的影响

获取原文
           

摘要

Reconciling grid cells with place cells over a set of flexible charts Alessandro Treves !-*, Chol Jun Kang, Davide Spalla', Federico Stella*>, Remi Monasson4 1 SISSA, Trieste, Italy 2 Kim II Sung University, Pyongyang, Republic of Korea 3 IST Austria, Klosterneuburg, Austria 4 ENS, Paris, France Grid cells have been regarded as a rigid system, essentially memory-less and almost frozen (Fyhn et al., 2007), at least after their developmental maturation. Recent data indicates, however, that such rigidity may be an artifact of studying grid cells in the lab, typically in a flat arena. If they have to represent spatial posi- tion ‘in the wild’, eg in the curved burrows where rats live, they need to express memory of several familiar locations. We have now shown that a grid network has a significant memory capac- ity for uncorrelated representations (Spalla et al., 2019), bringing grid cells closer to place cells; but also that on curved surfaces it can maintain only partial coherence across its units (Stella et al., 2019), which endows it with the spin glass character of extended neocortical networks. These two features make the self-organized acquisition of new spatial representations, as explored in rodents, similar to that of abstract conceptual trajectories, as implemented in schemata. The challenge becomes that of understanding how schemata can latch onto each other to navigate long concrete or abstract trajectories (Kang and Treves, 2019).
机译:在一组灵活的图表上协调网格单元与位置单元Alessandro Treves!-*,Chol Jun Kang,Davide Spalla',Federico Stella *>,Remi Monasson4 1 SISSA,意大利的里雅斯特2韩国金正日大学,平壤3 IST奥地利,克洛斯特新堡,奥地利4 ENS,巴黎,法国至少在发育成熟之后,网格细胞就被认为是一种刚性系统,基本上没有记忆,几乎处于冻结状态(Fyhn等,2007)。但是,最新数据表明,这种刚性可能是在实验室(通常是在平坦的舞台上)研究网格单元的人工产物。如果它们必须“在野外”表示空间位置,例如在老鼠居住的弯曲洞穴中,则需要表达对几个熟悉位置的记忆。现在我们已经表明,网格网络对于不相关的表示具有显着的存储能力(Spalla等,2019),使网格单元更接近放置单元;而且在曲面上,它只能在其各个单元之间保持部分连贯性(Stella等人,2019),这使其具有扩展的新皮层网络的旋转玻璃特性。这两个功能使在啮齿动物中探索的新的空间表示形式能够自组织获取,类似于在图解中实现的抽象概念轨迹的构造形式。面临的挑战是如何理解图式如何相互锁定以导航较长的具体或抽象轨迹(Kang and Treves,2019)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号