首页> 外文期刊>Nonlinear processes in geophysics >Cosmic rays and stochastic magnetic reconnection in the heliotail
【24h】

Cosmic rays and stochastic magnetic reconnection in the heliotail

机译:日尾中的宇宙射线和随机磁重联

获取原文
           

摘要

Galactic cosmic rays are believed to be generated by diffusive shock acceleration processes in Supernova Remnants, and the arrival direction is likely determined by the distribution of their sources throughout the Galaxy, in particular by the nearest and youngest ones. Transport to Earth through the interstellar medium is expected to affect the cosmic ray properties as well. However, the observed anisotropy of TeV cosmic rays and its energy dependence cannot be explained with diffusion models of particle propagation in the Galaxy. Within a distance of a few parsec, diffusion regime is not valid and particles with energy below about 100 TeV must be influenced by the heliosphere and its elongated tail. The observation of a highly significant localized excess region of cosmic rays from the apparent direction of the downstream interstellar flow at 1–10 TeV energies might provide the first experimental evidence that the heliotail can affect the transport of energetic particles. In particular, TeV cosmic rays propagating through the heliotail interact with the 100–300 AU wide magnetic field polarity domains generated by the 11 yr cycles. Since the strength of non-linear convective processes is expected to be larger than viscous damping, the plasma in the heliotail is turbulent. Where magnetic field domains converge on each other due to solar wind gradient, stochastic magnetic reconnection likely occurs. Such processes may be efficient enough to re-accelerate a fraction of TeV particles as long as scattering processes are not strong. Therefore, the fractional excess of TeV cosmic rays from the narrow region toward the heliotail direction traces sightlines with the lowest smearing scattering effects, that can also explain the observation of a harder than average energy spectrum.
机译:人们认为银河系宇宙射线是由超新星遗迹中的扩散激波加速过程产生的,其到达方向很可能取决于它们在整个银河系中的分布,尤其是最近和最年轻的星系。通过星际介质传输到地球也有望影响宇宙射线的性质。但是,不能用银河系中粒子传播的扩散模型来解释观测到的TeV宇宙射线的各向异性及其能量依赖性。在几分秒的距离内,扩散机制无效,并且能量低于约100 TeV的粒子必须受到日光层及其细长尾部的影响。从下游星际流在1–10 TeV能量处的明显方向观察到的宇宙射线高度显着的局部过量区域,可能提供第一个实验证据,表明日尾尾会影响高能粒子的传输。特别是,TeV宇宙射线通过日尾尾传播时,与11年周期产生的100-300 AU宽磁场极性域相互作用。由于非线性对流过程的强度预计将大于粘性阻尼,因此日尾尾形中的等离子体是湍流的。在由于太阳风梯度而使磁场域彼此会聚的地方,可能会发生随机磁重连。只要散射过程不强,这种过程可能足以重新加速一部分TeV颗粒的效率。因此,TeV宇宙射线从狭窄区域朝向日尾尾方向的部分过量会跟踪具有最小拖尾散射效应的视线,这也可以解释观察到比平均能谱更坚硬的现象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号