...
首页> 外文期刊>Npj Computational Materials >Theoretical potential for low energy consumption phase change memory utilizing electrostatically-induced structural phase transitions in 2D materials
【24h】

Theoretical potential for low energy consumption phase change memory utilizing electrostatically-induced structural phase transitions in 2D materials

机译:利用2D材料中的静电感应结构相变实现低能耗相变存储器的理论潜力

获取原文
           

摘要

Structural phase-change materials are of great importance for applications in information storage devices. Thermally driven structural phase transitions are employed in phase-change memory to achieve lower programming voltages and potentially lower energy consumption than mainstream nonvolatile memory technologies. However, the waste heat generated by such thermal mechanisms is often not optimized, and could present a limiting factor to widespread use. The potential for electrostatically driven structural phase transitions has recently been predicted and subsequently reported in some two-dimensional materials, providing an athermal mechanism to dynamically control properties of these materials in a nonvolatile fashion while achieving potentially lower energy consumption. In this work, we employ DFT-based calculations to make theoretical comparisons of the energy required to drive electrostatically-induced and thermally-induced phase transitions. Determining theoretical limits in monolayer MoTe2 and thin films of Ge2Sb2Te5, we find that the energy consumption per unit volume of the electrostatically driven phase transition in monolayer MoTe2 at room temperature is 9% of the adiabatic lower limit of the thermally driven phase transition in Ge2Sb2Te5. Furthermore, experimentally reported phase change energy consumption of Ge2Sb2Te5 is 100–10,000 times larger than the adiabatic lower limit due to waste heat flow out of the material, leaving the possibility for energy consumption in monolayer MoTe2-based devices to be orders of magnitude smaller than Ge2Sb2Te5-based devices.
机译:结构相变材料对于信息存储设备中的应用非常重要。与主流的非易失性存储技术相比,在相变存储器中采用了热驱动的结构相变,以实现更低的编程电压和更低的能耗。然而,由这种热机制产生的废热通常没有被优化,并且可能成为广泛使用的限制因素。最近已经预测并随后在某些二维材料中报道了静电驱动的结构相变的潜力,从而提供了一种无热机制,可以以非易失性方式动态控制这些材料的性能,同时实现了更低的能耗。在这项工作中,我们采用基于DFT的计算方法来对驱动静电感应相变和热感应相变所需的能量进行理论比较。通过确定单层MoTe2和Ge2Sb2Te5薄膜的理论极限,我们发现室温下单层MoTe2的静电驱动相变每单位体积的能量消耗是Ge2Sb2Te5热驱动相变的绝热下限的9%。此外,由于废热从材料中逸出,实验报告的Ge2Sb2Te5相变能耗比绝热下限大100–10,000倍,从而使单层基于MoTe2的器件的能耗小于基于Ge2Sb2Te5的设备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号