首页> 外文期刊>OASIcs : OpenAccess Series in Informatics >Separations of Non-monotonic Randomness Notions
【24h】

Separations of Non-monotonic Randomness Notions

机译:非单调随机性概念的分离

获取原文
           

摘要

In the theory of algorithmic randomness, several notions of random sequence are defined via a game-theoretic approach, and the notions that received most attention are perhaps Martin-L"of randomness and computable randomness. The latter notion was introduced by Schnorr and is rather natural: an infinite binary sequence is computably random if no total computable strategy succeeds on it by betting on bits in order. However, computably random sequences can have properties that one may consider to be incompatible with being random, in particular, there are computably random sequences that are highly compressible. The concept of Martin-L"of randomness is much better behaved in this and other respects, on the other hand its definition in terms of martingales is considerably less natural. Muchnik, elaborating on ideas of Kolmogorov and Loveland, refined Schnorr's model by also allowing non-monotonic strategies, i.e. strategies that do not bet on bits in order. The subsequent ``non-monotonic'' notion of randomness, now called Kolmogorov-Loveland-randomness, has been shown to be quite close to Martin-L"of randomness, but whether these two classes coincide remains a fundamental open question. In order to get a better understanding of non-monotonic randomness notions, Miller and Nies introduced some interesting intermediate concepts, where one only allows non-adaptive strategies, i.e., strategies that can still bet non-monotonically, but such that the sequence of betting positions is known in advance (and computable). Recently, these notions were shown by Kastermans and Lempp to differ from Martin-L"of randomness. We continue the study of the non-monotonic randomness notions introduced by Miller and Nies and obtain results about the Kolmogorov complexities of initial segments that may and may not occur for such sequences, where these results then imply a complete classification of these randomness notions by order of strength.
机译:在算法随机性理论中,一些随机序列的概念是通过博弈论方法定义的,最受关注的概念可能是随机性和可计算随机性的Martin-L。相当自然:如果没有完整的可计算策略通过按顺序押注位来使无穷二进制序列在随机数上获得成功,那么该可计算随机序列可以具有人们可能认为与随机不相容的特性,特别是高度可压缩的随机序列。在这方面和其他方面,Martin-L的“随机性”概念表现得更好,另一方面,就of而言,其定义自然不那么自然。 Muchnik在阐述Kolmogorov和Loveland的思想时,还通过允许非单调策略(即不按顺序下注的策略)完善了Schnorr的模型。后来出现的“非单调”的随机性概念(现称为Kolmogorov-Loveland-随机性)已经非常接近于Martin-L的随机性,但是这两个类别是否重合仍然是一个基本的开放性问题。为了更好地理解非单调随机性概念,Miller和Nies引入了一些有趣的中间概念,其中仅允许非自适应策略,即仍然可以非单调下注的策略,但使得下注位置的顺序最近,这些概念由Kastermans和Lempp证明与随机性的Martin-L不同。我们继续研究Miller和Nies引入的非单调随机性概念,并获得关于此类序列可能发生和可能不会发生的初始片段的Kolmogorov复杂性的结果,这些结果随后暗示了这些随机性概念按顺序的完整分类的力量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号