首页> 外文期刊>Applied Microbiology >Engineering Escherichia coli for Biodiesel Production Utilizing a Bacterial Fatty Acid Methyltransferase
【24h】

Engineering Escherichia coli for Biodiesel Production Utilizing a Bacterial Fatty Acid Methyltransferase

机译:利用细菌脂肪酸甲基转移酶工程化生产生物柴油的大肠杆菌

获取原文
           

摘要

The production of low-cost biofuels in engineered microorganisms is of great interest due to the continual increase in the world's energy demands. Biodiesel is a renewable fuel that can potentially be produced in microbes cost-effectively. Fatty acid methyl esters (FAMEs) are a common component of biodiesel and can be synthesized from either triacylglycerol or free fatty acids (FFAs). Here we report the identification of a novel bacterial fatty acid methyltransferase (FAMT) that catalyzes the formation of FAMEs and 3-hydroxyl fatty acid methyl esters (3-OH-FAMEs) from the respective free acids and S -adenosylmethionine (AdoMet). FAMT exhibits a higher specificity toward 3-hydroxy free fatty acids (3-OH-FFAs) than FFAs, synthesizing 3-hydroxy fatty acid methyl esters (3-OH-FAMEs) in vivo . We have also identified bacterial members of the fatty acyl-acyl carrier protein (ACP) thioesterase (FAT) enzyme family with distinct acyl chain specificities. These bacterial FATs exhibit increased specificity toward 3-hydroxyacyl-ACP, generating 3-OH-FFAs, which can subsequently be utilized by FAMTs to produce 3-OH-FAMEs. PhaG (3-hydroxyacyl ACP:coenzyme A [CoA] transacylase) constitutes an alternative route to 3-OH-FFA synthesis; the coexpression of PhaG with FAMT led to the highest level of accumulation of 3-OH-FAMEs and FAMEs. The availability of AdoMet, the second substrate for FAMT, is an important factor regulating the amount of methyl esters produced by bacterial cells. Our results indicate that the deletion of the global methionine regulator metJ and the overexpression of methionine adenosyltransferase result in increased methyl ester synthesis.
机译:由于世界能源需求的持续增长,利用工程微生物生产低成本生物燃料备受关注。生物柴油是一种可再生燃料,可以潜在地成本有效地在微生物中生产。脂肪酸甲酯(FAME)是生物柴油的常见成分,可以由三酰基甘油或游离脂肪酸(FFA)合成。在这里,我们报告的新型细菌脂肪酸甲基转移酶(FAMT)的鉴定,该酶可以催化FAME和3-羟基脂肪酸甲酯(3-OH-FAME)的形成,分别来自游离酸和S-腺苷甲硫氨酸(AdoMet)。与FFA相比,FAMT对3-羟基游离脂肪酸(3-OH-FFA)表现出更高的特异性,可在体内合成3-羟基脂肪酸甲酯(3-OH-FAME)。我们还确定了具有不同酰基链特异性的脂肪酰基-酰基载体蛋白(ACP)硫酯酶(FAT)酶家族的细菌成员。这些细菌FAT对3-羟酰基-ACP表现出更高的特异性,从而生成3-OH-FFA,随后FAMT可以利用它们来生成3-OH-FAME。 PhaG(3-羟酰基ACP:辅酶A [CoA]转酰基酶)构成了3-OH-FFA合成的另一种途径; PhaG与FAMT的共表达导致3-OH-FAME和FAME的积累水平最高。 FAMT的第二种底物AdoMet的可用性是调节细菌细胞产生的甲基酯数量的重要因素。我们的结果表明,全局蛋氨酸调节剂metJ的缺失和蛋氨酸腺苷基转移酶的过表达导致甲酯合成增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号