...
首页> 外文期刊>Applied Microbiology >Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa
【24h】

Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa

机译:铜绿假单胞菌的应变和底物依赖性氧化还原介体和发电

获取原文
           

摘要

Pseudomonas aeruginosa is an important, thriving member of microbial communities of microbial bioelectrochemical systems (BES) through the production of versatile phenazine redox mediators. Pure culture experiments with a model strain revealed synergistic interactions of P. aeruginosa with fermenting microorganisms whereby the synergism was mediated through the shared fermentation product 2,3-butanediol. Our work here shows that the behavior and efficiency of P. aeruginosa in mediated current production is strongly dependent on the strain of P. aeruginosa . We compared levels of phenazine production by the previously investigated model strain P. aeruginosa PA14, the alternative model strain P. aeruginosa PAO1, and the BES isolate Pseudomonas sp. strain KRP1 with glucose and the fermentation products 2,3-butanediol and ethanol as carbon substrates. We found significant differences in substrate-dependent phenazine production and resulting anodic current generation for the three strains, with the BES isolate KRP1 being overall the best current producer and showing the highest electrochemical activity with glucose as a substrate (19 μA cm~(?2) with ~150 μg ml~(?1) phenazine carboxylic acid as a redox mediator). Surprisingly, P. aeruginosa PAO1 showed very low phenazine production and electrochemical activity under all tested conditions.IMPORTANCE Microbial fuel cells and other microbial bioelectrochemical systems hold great promise for environmental technologies such as wastewater treatment and bioremediation. While there is much emphasis on the development of materials and devices to realize such systems, the investigation and a deeper understanding of the underlying microbiology and ecology are lagging behind. Physiological investigations focus on microorganisms exhibiting direct electron transfer in pure culture systems. Meanwhile, mediated electron transfer with natural redox compounds produced by, for example, Pseudomonas aeruginosa might enable an entire microbial community to access a solid electrode as an alternative electron acceptor. To better understand the ecological relationships between mediator producers and mediator utilizers, we here present a comparison of the phenazine-dependent electroactivities of three Pseudomonas strains. This work forms the foundation for more complex coculture investigations of mediated electron transfer in microbial fuel cells.
机译:通过生产通用的吩嗪氧化还原介体,铜绿假单胞菌是微生物生物电化学体系(BES)微生物群落的重要组成部分。用模型菌株进行的纯培养实验揭示了铜绿假单胞菌与发酵微生物的协同相互作用,其中协同作用是通过共享的发酵产物2,3-丁二醇介导的。我们在这里的工作表明,铜绿假单胞菌在介导的电流产生中的行为和效率在很大程度上取决于铜绿假单胞菌的菌株。我们比较了以前研究过的模型菌株铜绿假单胞菌PA14,替代模型菌株铜绿假单胞菌PAO1和BES分离的假单胞菌sp。产生的吩嗪水平。菌株KRP1,其中葡萄糖以及发酵产物2,3-丁二醇和乙醇为碳底物。我们发现三种菌株在底物依赖性吩嗪的产生和产生的阳极电流方面存在显着差异,其中BES分离物KRP1总体上是最佳电流产生剂,并且以葡萄糖为底物表现出最高的电化学活性(19μAcm〜(?2 ),使用〜150μgml〜(?1)吩嗪羧酸作为氧化还原介体)。出乎意料的是,铜绿假单胞菌PAO1在所有测试条件下均表现出极低的吩嗪生成和电化学活性。重要提示微生物燃料电池和其他微生物生物电化学系统对诸如废水处理和生物修复等环境技术具有广阔的前景。尽管人们非常重视开发用于实现此类系统的材料和设备,但对基础微生物学和生态学的研究和更深入的了解却落在了后面。生理研究集中在纯培养系统中表现出直接电子转移的微生物。同时,用例如铜绿假单胞菌产生的天然氧化还原化合物介导的电子转移可能使整个微生物群落能够进入固体电极作为替代电子受体。为了更好地理解介体生产者与介体利用者之间的生态关系,我们在此对三种假单胞菌菌株的吩嗪依赖性电活性进行比较。这项工作为微生物燃料电池中介导的电子转移的更复杂的共培养研究奠定了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号