...
首页> 外文期刊>Applied Microbiology >Direct Interspecies Electron Transfer between Geobacter metallireducens and Methanosarcina barkeri
【24h】

Direct Interspecies Electron Transfer between Geobacter metallireducens and Methanosarcina barkeri

机译:金属还原金属杆菌和巴氏甲烷菌之间的直接种间电子转移

获取原文
           

摘要

Direct interspecies electron transfer (DIET) is potentially an effective form of syntrophy in methanogenic communities, but little is known about the diversity of methanogens capable of DIET. The ability of Methanosarcina barkeri to participate in DIET was evaluated in coculture with Geobacter metallireducens . Cocultures formed aggregates that shared electrons via DIET during the stoichiometric conversion of ethanol to methane. Cocultures could not be initiated with a pilin-deficient G. metallireducens strain, suggesting that long-range electron transfer along pili was important for DIET. Amendments of granular activated carbon permitted the pilin-deficient G. metallireducens isolates to share electrons with M. barkeri , demonstrating that this conductive material could substitute for pili in promoting DIET. When M. barkeri was grown in coculture with the H_(2)-producing Pelobacter carbinolicus , incapable of DIET, M. barkeri utilized H_(2) as an electron donor but metabolized little of the acetate that P. carbinolicus produced. This suggested that H_(2), but not electrons derived from DIET, inhibited acetate metabolism. P. carbinolicus-M. barkeri cocultures did not aggregate, demonstrating that, unlike DIET, close physical contact was not necessary for interspecies H_(2) transfer. M. barkeri is the second methanogen found to accept electrons via DIET and the first methanogen known to be capable of using either H_(2) or electrons derived from DIET for CO_(2) reduction. Furthermore, M. barkeri is genetically tractable, making it a model organism for elucidating mechanisms by which methanogens make biological electrical connections with other cells.
机译:直接种间电子转移(DIET)在产甲烷群落中可能是有效的同养化形式,但对于能够进行DIET的产甲烷菌的多样性知之甚少。与金属还原杆菌共培养评估了甲烷氧化甲烷参与DIET的能力。共培养物形成聚集体,该聚集体在乙醇化学转化为甲烷期间通过DIET共享电子。共培养不能用缺乏菌毛素的G.metallireducens菌株开始,这表明沿菌毛的远距离电子转移对DIET很重要。颗粒状活性炭的修改允许缺乏菌毛素的G.metallireducens分离株与巴克莫氏杆菌共享电子,表明该导电材料可以代替菌毛来促进DIET。当巴克木与不能产生DIET的H_(2)产生的杆状杆菌共培养时,巴克木就利用H_(2)作为电子供体,但是很少代谢卡氏木霉产生的乙酸盐。这表明H_(2)抑制了乙酸酯的代谢,但不是来自DIET的电子。卡氏毕赤酵母巴克利共培养物没有聚集,表明与DIET不同,种间H_(2)转移不需要紧密的身体接触。巴氏甲烷八叠球菌是发现第二个通过DIET接受电子的产甲烷菌,也是第一个已知能够使用H_(2)或源自DIET的电子进行CO_(2)还原的产甲烷菌。此外,巴克氏杆菌在遗传上易处理,使其成为模型生物,可阐明产甲烷菌与其他细胞建立生物电连接的机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号