...
首页> 外文期刊>Astronomy and astrophysics >Dynamical rearrangement of super-Earths during disk dispersal - II. Assessment of the magnetospheric rebound model for planet formation scenarios
【24h】

Dynamical rearrangement of super-Earths during disk dispersal - II. Assessment of the magnetospheric rebound model for planet formation scenarios

机译:磁盘分散过程中超地球的动态重排-II。评估行星形成情景的磁层回弹模型

获取原文
           

摘要

Context. The Kepler mission has provided a large sample to statistically analyze the orbital properties of the super-Earth planet population. We hypothesize that these planets formed early and consider the problem of matching planet formation theory to the current orbital configurations. Two scenarios – disk migration and in-situ formation – have been proposed to explain the origin of these planets. In the migration scenario, planets migrate inward to the inner disk due to planet-disk interaction, whereas in the in-situ scenario planets assemble locally. Therefore, planets formed by migration are expected to end up in resonances, whereas those formed in-situ are expected to stay in short period ratios and in non-resonant orbits. Both predictions are at odds with observations. Aims. We investigate whether a preferred formation scenario can be identified through a comparison between the magnetospheric rebound model and the Kepler data. Methods. We conduct N -body simulations of two-planet systems during the disk dispersal phase. Several distributions of model parameters are considered and we make a statistical comparison between the simulations and the Kepler observations. Results. Comparing the migration and the in-situ scenarios, we find that magnetospheric rebound tends to erase the difference in the orbital configuration that was initially presented. After disk dispersal, not all planets are in resonance in the migration scenario, whereas planets do not remain in compact configurations in the in-situ scenario. In both scenarios, the orbits of planets increase with the cavity expansion, and their period ratios have a wider distribution. Conclusions. From a statistical perspective, the magnetospheric rebound model reproduces several observed properties of Kepler planets, such as the fact that a significant number of planets are not in resonances and planet pairs can end up at large period ratios. The disparity in orbital configuration between the two formation scenarios is substantially reduced after disk dispersal.
机译:上下文。开普勒任务提供了大量样本,以统计方式分析超地球行星人口的轨道特性。我们假设这些行星是早期形成的,并考虑了将行星形成理论与当前轨道构型相匹配的问题。为了解释这些行星的起源,提出了两种情况-磁盘迁移和原位形成。在迁移情况下,行星由于行星-磁盘相互作用而向内迁移到内盘,而在原位情况下,行星在本地聚集。因此,通过迁移形成的行星有望以共振结束,而在原位形成的行星则有望以短周期比率和非共振轨道停留。两种预测都与观察结果不一致。目的我们研究了通过磁层回弹模型和开普勒数据之间的比较是否可以确定优选的形成情景。方法。在磁盘扩散阶段,我们对两行星系统进行了N体模拟。考虑了模型参数的几种分布,我们在仿真和开普勒观测值之间进行了统计比较。结果。比较迁移和原位情况,我们发现磁层回弹趋向于消除最初呈现的轨道构型的差异。磁盘散布后,并非所有行星在迁移情况下都处于共振状态,而在原位情况下,行星并非保持紧凑结构。在这两种情况下,行星的轨道都随着腔膨胀而增加,并且它们的周期比具有更宽的分布。结论。从统计的角度来看,磁层回弹模型再现了开普勒行星的几种观测特性,例如大量行星没有共振且行星对可以以较大的周期比结束的事实。磁盘散布后,两个编队情景之间的轨道配置差异大大减少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号