...
首页> 外文期刊>Molecular and Cellular Biology >Genetic, Physical, and Functional Interactions between the Triphosphatase and Guanylyltransferase Components of the Yeast mRNA Capping Apparatus
【24h】

Genetic, Physical, and Functional Interactions between the Triphosphatase and Guanylyltransferase Components of the Yeast mRNA Capping Apparatus

机译:酵母mRNA封盖设备的三磷酸酶和鸟苷基转移酶成分之间的遗传,物理和功能相互作用。

获取原文
           

摘要

We have characterized an essential Saccharomyces cerevisiae gene, CES5, that when present in high copy, suppresses the temperature-sensitive growth defect caused by the ceg1-25 mutation of the yeast mRNA guanylyltransferase (capping enzyme). CES5 is identical toCET1, which encodes the RNA triphosphatase component of the yeast capping apparatus. Purified recombinant Cet1 catalyzes hydrolysis of the γ phosphate of triphosphate-terminated RNA at a rate of 1 s?1. Cet1 is a monomer in solution; it binds with recombinant Ceg1 in vitro to form a Cet1-Ceg1 heterodimer. The interaction of Cet1 with Ceg1 elicits >10-fold stimulation of the guanylyltransferase activity of Ceg1. This stimulation is the result of increased affinity for the GTP substrate. A truncated protein, Cet1(201-549), has RNA triphosphatase activity, heterodimerizes with and stimulates Ceg1 in vitro, and suffices when expressed in single copy for cell growth in vivo. The more extensively truncated derivative Cet1(246-549) also has RNA triphosphatase activity but fails to stimulate Ceg1 in vitro and is lethal when expressed in single copy in vivo. These data suggest that the Cet1-Ceg1 interaction is essential but do not resolve whether the triphosphatase activity is also necessary. The mammalian capping enzyme Mce1 (a bifunctional triphosphatase-guanylyltransferase) substitutes for Cet1 in vivo. A mutation of the triphosphatase active-site cysteine of Mce1 is lethal. Hence, an RNA triphosphatase activity is essential for eukaryotic cell growth. This work highlights the potential for regulating mRNA cap formation through protein-protein interactions.
机译:我们已经表征了一个基本的酿酒酵母基因 CES5 ,当它以高拷贝存在时,它可以抑制由 ceg1-25 引起的温度敏感型生长缺陷。 em>突变的酵母mRNA鸟嘌呤基转移酶(加帽酶)。 CES5 CET1 相同,后者编码酵母加盖装置中的RNA三磷酸酶成分。纯化的重组Cet1以1 s ?1 的速率催化三磷酸封端的RNA的γ磷酸水解。 Cet1是溶液中的单体;它在体外与重组Ceg1结合形成Cet1-Ceg1异二聚体。 Cet1与Ceg1的相互作用引起Ceg1的鸟苷转移酶活性的> 10倍刺激。这种刺激是对GTP底物亲和力增加的结果。截短的蛋白Cet1(201-549)具有RNA三磷酸酶活性,在体外与Ceg1异源二聚体并刺激Ceg1,当以单拷贝形式表达时就足以在体内细胞生长。截短程度更大的衍生物Cet1(246-549)也具有RNA三磷酸酶活性,但不能在体外刺激Ceg1,并且在体内以单拷贝表达时具有致死性。这些数据表明,Cet1-Ceg1相互作用是必不可少的,但不能解决三磷酸酶活性是否也是必需的。哺乳动物的加帽酶Mce1(双功能三磷酸酶-鸟苷基转移酶)在体内替代Cet1。 Mce1的三磷酸酶活性位点半胱氨酸的突变是致命的。因此,RNA三磷酸酶活性对于真核细胞生长至关重要。这项工作强调了通过蛋白质-蛋白质相互作用调节mRNA帽形成的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号