首页> 外文期刊>RSC Advances >The influence of carbon nanotubes and graphene oxide sheets on the morphology, porosity, surface characteristics and thermal and electrical properties of polysiloxane derived ceramics
【24h】

The influence of carbon nanotubes and graphene oxide sheets on the morphology, porosity, surface characteristics and thermal and electrical properties of polysiloxane derived ceramics

机译:碳纳米管和氧化石墨烯片对聚硅氧烷衍生陶瓷的形貌,孔隙率,表面特性以及热电性能的影响

获取原文
           

摘要

Graphene oxide (GO) and multi-walled carbon nanotubes (MWCNT) were incorporated into a SiOC composite ceramic matrix using a simple roll-mixing method followed by thermal cross-linking and pyrolysis. The structure, morphology, porosity, surface characteristics, and thermal properties of polysiloxane are analysed using scanning electron microscopy, BET specific surface area, mercury intrusion porosimetry, water vapour and n-heptane adsorption, and Raman spectroscopy, respectively. The electrical conductivity, conduction mechanism, and percolation behavior of the composite ceramics are investigated by electrical impedance spectroscopy in the temperature range of 25–250 °C. Free-rising composite ceramic foams are generated, incorporating both nanofillers into the SiOC ceramic matrix. Both nanofillers show a positive effect on the thermal stability of the SiOC ceramics. The room temperature DC conductivity value of pure SiOC ceramics shows ~2.97 × 10?9 S cm?1, which increases by three to four orders of magnitude after the incorporation of 5 wt% conductive nanofillers (~2.5 × 10?6 S cm?1 for 5 wt% GO and ~2.08 × 10?5 S cm?1 for 5 wt% MWCNT). The calculated activation energy from the Arrhenius plot for composite ceramics is found to be lower (0.10 eV for 5 wt% GO and 0.07 eV for 5 wt% MWCNT) compared to the same SiOC ceramics without nanofillers (0.22 eV). The conduction mechanism studies of composite ceramics suggest a non-Debye type distribution of relaxation in SiOC. Thus the nanofiller-enhanced SiOC ceramics are highly promising materials for rechargeable batteries, high-temperature fuel cells, gas sensors, display devices etc.
机译:氧化石墨烯(GO)和多壁碳纳米管(MWCNT)使用简单的辊混法并随后进行热交联和热解,并入到SiOC复合陶瓷基体中。使用扫描电子显微镜,BET比表面积,压汞法,水蒸汽和 n 庚烷吸附以及拉曼光谱分析聚硅氧烷的结构,形态,孔隙率,表面特性和热性能。分别。通过在25–250°C的温度范围内的电阻抗光谱法研究了复合陶瓷的电导率,传导机理和渗透行为。产生自由上升的复合陶瓷泡沫,将两种纳米填料都掺入到SiOC陶瓷基体中。两种纳米填料都对SiOC陶瓷的热稳定性产生积极影响。纯SiOC陶瓷的室温直流电导率值为〜2.97×10 ?9 S cm ?1 ,掺入5 wt%的导电纳米填料(〜2.5×10 ?6 S cm ?1 < / sup> 用于5 wt%的GO和〜2.08×10 ?5 S cm ?1 对于5wt%的MWCNT)。与没有纳米填料的相同SiOC陶瓷(0.22 eV)相比,由Arrhenius曲线得出的复合陶瓷的活化能更低(对于5 wt%的GO为0.10 eV,对于5wt%的MWCNT为0.07 eV)。复合陶瓷的传导机理研究表明,SiOC中弛豫的非德拜型分布。因此,纳米填料增强的SiOC陶瓷是用于可充电电池,高温燃料电池,气体传感器,显示设备等的极有前途的材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号