首页> 外文期刊>RSC Advances >Dissociation mechanism of H2 molecule on the Li2O/hydrogenated-Li2O (111) surface from first principles calculations
【24h】

Dissociation mechanism of H2 molecule on the Li2O/hydrogenated-Li2O (111) surface from first principles calculations

机译:从第一性原理计算,H 2 分子在Li 2 O /氢化-Li 2 O(111)表面上的解离机理

获取原文
           

摘要

Hydrogen molecules in a purge gas are known to enhance the release of tritium from lithium ceramic materials, which has been demonstrated in numerous in-pile experiments. The static computational results suggest that the molecular adsorption of H2 on the “ideal” Li2O/hydrogenated-Li2O (111) surface encounters high dissociation barriers in various entrance channels. The surface chemical inertness of the plane can be broken by introducing vacancy defects. In the present work, a combination of static DFT calculations and ab initio molecular dynamics has been performed to investigate the H2 dissociative mechanism. Our theoretical results, that the end-on oriented H2 could dissociate on the hydrogen monomer vacancy surface with one hydrogen atom ejected into the gas phase by the abstraction channel and the parallel H2 molecule dissociates on the hydrogen dimer vacancy surface with two hydroxyls forming, suggest that hydrogen vacancy defects facilitate the adsorption and dissociation of H2 molecule. The presence of the O2? ion induced by the hydrogen vacancy provides some low energy states in which the H2 electrons can be accommodated. This is very instructive for the comprehension of phenomena that occur during the operation of a thermonuclear reactor.
机译:众所周知,吹扫气体中的氢分子会增强锂陶瓷材料中tri的释放,这已在众多堆内实验中得到证实。静态计算结果表明,H 2 在理想的Li 2 /氢化的分子吸附-Li 2 O(111)表面在各种进入通道中遇到高解离势垒。可以通过引入空位缺陷来破坏平面的表面化学惰性。在目前的工作中,结合静态DFT计算和从头算分子动力学来研究H 2 的解离机理。我们的理论结果是,端部取向的H 2 可以在氢单体空位表面解离,其中一个氢原子通过抽象通道和平行通道喷入气相H 2 分子在氢二聚体空位表面解离并形成两个羟基,表明氢空位缺陷促进了H 2的吸附和解离。 sub> 分子。氢空位引起的O 2? 离子的存在提供了一些低能态,其中H 2 可以容纳电子。这对于理解热核反应堆运行过程中发生的现象非常有启发性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号