...
首页> 外文期刊>Journal of bacteriology >Proteolytic Regulation of Toxin-Antitoxin Systems by ClpPC in Staphylococcus aureus
【24h】

Proteolytic Regulation of Toxin-Antitoxin Systems by ClpPC in Staphylococcus aureus

机译:ClpPC对金黄色葡萄球菌毒素-抗毒素系统的蛋白水解调控。

获取原文
           

摘要

Bacterial toxin-antitoxin (TA) systems typically consist of a small, labile antitoxin that inactivates a specific longer-lived toxin. In Escherichia coli, such antitoxins are proteolytically regulated by the ATP-dependent proteases Lon and ClpP. Under normal conditions, antitoxin synthesis is sufficient to replace this loss from proteolysis, and the bacterium remains protected from the toxin. However, if TA production is interrupted, antitoxin levels decrease, and the cognate toxin is free to inhibit the specific cellular component, such as mRNA, DnaB, or gyrase. To date, antitoxin degradation has been studied only in E. coli, so it remains unclear whether similar mechanisms of regulation exist in other organisms. To address this, we followed antitoxin levels over time for the three known TA systems of the major human pathogen Staphylococcus aureus, mazEF, axe1-txe1, and axe2-txe2. We observed that the antitoxins of these systems, MazEsa, Axe1, and Axe2, respectively, were all degraded rapidly (half-life [t1/2], ~18 min) at rates notably higher than those of their E. coli counterparts, such as MazE (t1/2, ~30 to 60 min). Furthermore, when S. aureus strains deficient for various proteolytic systems were examined for changes in the half-lives of these antitoxins, only strains with clpC or clpP deletions showed increased stability of the molecules. From these studies, we concluded that ClpPC serves as the functional unit for the degradation of all known antitoxins in S. aureus.
机译:细菌毒素-抗毒素(TA)系统通常由一种小的,不稳定的抗毒素组成,可以使特定寿命更长的毒素失活。在大肠杆菌中,这种抗毒素由ATP依赖性蛋白酶Lon和ClpP进行蛋白水解调节。在正常条件下,抗毒素合成足以弥补蛋白水解造成的损失,并且细菌保持免受毒素侵害。但是,如果中断了TA的产生,抗毒素水平会降低,并且同源毒素可以自由抑制特定的细胞成分,例如mRNA,DnaB或促旋酶。迄今为止,仅在 E中研究了抗毒素降解。大肠杆菌,因此尚不清楚其他生物中是否存在类似的调控机制。为了解决这个问题,我们随时间追踪了三种主要人类病原体金黄色葡萄球菌 mazEF axe1 -< em> txe1 axe2 - txe2 。我们观察到,这些系统的抗毒素分别是MazE sa ,Axe1和Axe2,都被迅速降解(半衰期[ t 1/2 ],〜18分钟),其速度明显高于其 E。大肠杆菌(例如MazE)( t 1/2 ,约30至60分钟)。此外,当 S。检查了各种蛋白水解系统缺陷的金黄色葡萄球菌菌株这些抗毒素半衰期的变化,只有具有 clpC clpP 缺失的菌株显示了它们的稳定性增加。分子。从这些研究中,我们得出结论,ClpPC可作为降解 S中所有已知抗毒素的功能单元。金黄色

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号