...
首页> 外文期刊>Materials today >Kirigami-enabled self-folding origami
【24h】

Kirigami-enabled self-folding origami

机译:启用Kirigami的自折叠折纸

获取原文
           

摘要

Self-folding of complex origami-inspired structures from flat states allows for the incorporation of a multitude of surface-related functionalities into the final 3D device. Several self-folding techniques have therefore been developed during the last few years to fabricate such multi-functional devices. The vast majority of such approaches are, however, limited to simple folding sequences, specific materials, or large length scales, rendering them inapplicable to microscale (meta)materials and devices with complex geometries, which are often made from materials other than the ones for which these approaches are developed. Here, we propose a mechanical self-folding technique that only requires global stretching for activation, is applicable to a wide range of materials, allows for sequential self-folding of multi-storey constructs, and can be downscaled to microscale dimensions. We combined two types of permanently deforming kirigami elements, working on the basis of either multi-stability or plastic deformation, with an elastic layer to create self-folding basic elements. The folding angles of these elements could be controlled using the kirigami cut patterns as well as the dimensions of the elastic layer and be accurately predicted using our computational models. We then assembled these basic elements in a modular manner to create multiple complex 3D structures (e.g., multi-storey origami lattices) in different sizes including some with microscale feature sizes. Moreover, starting from a flat state enabled us to incorporate not only precisely controlled, arbitrarily complex, and spatially varied micropatterns but also flexible electronics into the self-folded 3D structures. In all cases, our computational models could capture the self-folding behavior of the assemblies and the strains in the connectors of the flexible electronic devices, thereby guiding the rational design of our specimens. This approach has numerous potential applications including fabrication of multi-functional and instrumented implantable medical devices, steerable medical instruments, and microrobots.
机译:扁平状态的复杂折纸的结构的自折叠允许将多种表面相关功能掺入最终的3D设备。因此,在过去几年中已经开发了几种自折叠技术,以制造这种多功能设备。然而,绝大多数此类方法仅限于简单的折叠序列,特定材料或大长度尺度,使它们不适用于微观(Meta)材料和具有复杂几何形状的器件,这些材料通常由用于除其中之外的材料制成开发了这些方法。在这里,我们提出了一种机械自折叠技术,只需要全局拉伸用于激活,适用于各种材料,允许多层构造的顺序自折叠,并且可以缩小到微观尺寸。我们组合了两种永久变形的Kirigami元素,基于多稳定性或塑性变形的基础,具有弹性层,以产生自折叠的基本元素。可以使用Kirigami切割图案以及弹性层的尺寸来控制这些元件的折叠角度,并使用我们的计算模型进行精确预测。然后,我们以模块化方式组装这些基本元素,以在不同尺寸的不同尺寸中创建多个复杂的3D结构(例如,多层折纸格子),包括带有微观特征尺寸的一些。此外,从一个平坦的状态开始,使我们不仅能够精确地控制,任意复杂和空间上变化的微图案,而且是柔性电子器件进入自折叠的3D结构。在所有情况下,我们的计算模型都可以捕获组件的自折叠行为和柔性电子设备的连接器中的菌株,从而引导了我们标本的合理设计。该方法具有许多潜在的应用,包括制造多功能和仪器植入的医疗设备,可操纵的医疗仪器和微机器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号