...
首页> 外文期刊>Physical Review X >Heating in Nanophotonic Traps for Cold Atoms
【24h】

Heating in Nanophotonic Traps for Cold Atoms

机译:用于冷原子的纳米光学陷阱中加热

获取原文
           

摘要

Laser-cooled atoms that are trapped and optically interfaced with light in nanophotonic waveguides are a powerful platform for fundamental research in quantum optics as well as for applications in quantum communication and quantum-information processing. Ever since the first realization of such a hybrid quantum-nanophotonic system about a decade ago, heating rates of the atomic motion observed in various experimental settings have typically been exceeding those in comparable free-space optical microtraps by about 3 orders of magnitude. This excessive heating is a roadblock for the implementation of certain protocols and devices. Still, its origin has so far remained elusive and, at the typical atom-surface separations of less than an optical wavelength encountered in nanophotonic traps, numerous effects may potentially contribute to atom heating. Here, we theoretically describe the effect of mechanical vibrations of waveguides on guided light fields and provide a general theory of particle-phonon interaction in nanophotonic traps. We test our theory by applying it to the case of laser-cooled cesium atoms in nanofiber-based two-color optical traps. We find excellent quantitative agreement between the predicted heating rates and experimentally measured values. Our theory predicts that, in this setting, the dominant heating process stems from the optomechanical coupling of the optically trapped atoms to the continuum of thermally occupied flexural mechanical modes of the waveguide structure. Surprisingly, the effect of the high- Q mechanical resonances which have previously been observed in this system can be neglected, even if they coincide with the trap frequencies. Beyond unraveling the long-standing riddle of excessive heating in nanofiber-based atom traps, we also study the dependence of the heating rates on the relevant system parameters and find a strong R ? 5 / 2 scaling with the inverse waveguide radius. Our findings allow us to propose several strategies for minimizing the heating which also provide guidelines for the design of next-generation nanophotonic cold-atom systems. Finally, given that the predicted heating rate is proportional to the mass of the trapped particle, our findings are also highly relevant for optomechanics experiments with dielectric nanoparticles that are optically trapped close to nanophotonic waveguides.
机译:捕获和光学界面的激光冷却原子在纳米光波导中捕获和光学界面是量子光学器件中基本研究的强大平台,以及在量子通信和量子信息处理中的应用。自从大约十年前进行这种混合量子 - 纳米光电系统以来,在各种实验设置中观察到的原子动动的加热速率通常超过了比较自由空间光学微路径约3个级别的加热速率。这种过度的加热是实现某些协议和设备的障碍。尽管如此,它的起源到目前为止难以难以捉摸,并且在典型的原子表面分离小于纳秒陷阱中遇到的光学波长的分离,众多效果可能有助于原子加热。在这里,理论上,理论上描述了波导机械振动对引导光场的影响,并提供了纳米光疏阱中的粒子旋光相互作用的一般理论。我们通过将其应用于基于纳米纤维的双色光学疏水阀中的激光冷却铯原子的情况来测试我们的理论。我们在预测的加热率和实验测量值之间找到了出色的定量协议。我们的理论预测,在该设置中,主导加热过程源于光学截止原子的光学力学耦合到波导结构的热占用弯曲机械模式的连续。令人惊讶的是,即使它们与陷阱频率一致,也可以忽略先前在该系统中观察到的高Q机械共振的效果。除了在基于纳米纤维的Atom陷阱中过度加热的长期加热的长期加热之外,我们还研究了加热率对相关系统参数的依赖性,并找到了强大的r? 5/2缩放逆波导半径。我们的调查结果允许我们提出几种策略,以尽量减少加热,这也为下一代纳米光电系统设计提供了指导。最后,鉴于预测的加热速率与被困颗粒的质量成比例,我们的发现也对具有光学纳米粒子的介电纳米颗粒的光学力学实验高度相关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号