首页> 外文期刊>Physical Review X >Ultrafast Gap Dynamics and Electronic Interactions in a Photoexcited Cuprate Superconductor
【24h】

Ultrafast Gap Dynamics and Electronic Interactions in a Photoexcited Cuprate Superconductor

机译:超快隙动力学和光透镜超强导体中的电子交互

获取原文
           

摘要

We perform time- and angle-resolved photoemission spectroscopy (trARPES) on optimally doped Bi 2 Sr 2 CaCu 2 O 8 + δ (BSCCO-2212) using sufficient energy resolution (9?meV) to resolve the k -dependent near-nodal gap structure on time scales where the concept of an electronic pseudotemperature is a useful quantity, i.e., after electronic thermalization has occurred. We study the ultrafast evolution of this gap structure, uncovering a very rich landscape of decay rates as a function of angle, temperature, and energy. We explicitly focus on the quasiparticle states at the gap edge as well as on the spectral weight inside the gap that “fills” the gap—understood as an interaction, or self-energy effect—and we also make high resolution measurements of the nodal states, enabling a direct and accurate measurement of the electronic temperature (or pseudotemperature) of the electrons in the system. Rather than the standard method of interpreting these results using individual quasiparticle scattering rates that vary significantly as a function of angle, temperature, and energy, we show that the entire landscape of relaxations can be understood by modeling the system as following a nonequilibrium, electronic pseudotemperature that controls all electrons in the zone. Furthermore, this model has zero free parameters, as we obtain the crucial information of the SC gap Δ and the gap-filling strength Γ TDoS by connecting to static ARPES measurements. The quantitative and qualitative agreement between data and model suggests that the critical parameters and interactions of the system, including the pairing interactions, follow parametrically from the electronic pseudotemperature. We expect that this concept will be relevant for understanding the ultrafast response of a great variety of electronic materials, even though the electronic pseudotemperature may not be directly measurable.
机译:我们使用足够的能量分辨率(9ΩMEV)在最佳掺杂的BI 2 SR 2 CACU 2 O 8 +Δ(BSCCO-2212)上执行时间和角度分辨的光曝光光谱(次次)以解决K -Dependent近节点间隙在电子伪模型的概念是有用量的时刻尺度的结构,即在发生电子热化之后。我们研究了这种差距结构的超快演变,揭示了作为角度,温度和能量的衰减率的非常丰富的衰变景观。我们明确地专注于间隙边缘的Quasiparticle状态以及“填充”间隙所理解的间隙内的光谱重量,或者自能效应 - 我们也为节点状态进行了高分辨率测量,能够直接和准确地测量系统中电子的电子温度(或伪模型)。不是使用各自的Quasiparticle散射率来解释这些结果的标准方法,这些方法可以根据角度,温度和能量的函数显着变化,而是通过将系统建模如下,以遵循非单纤维,电子假性模型,可以理解整个放松景观控制区域中的所有电子。此外,该模型通过连接到静态ARPE测量,获得零可自由参数,因为我们通过连接静态ARPES测量获得SC间隙δ和间隙填充强度γTDO的关键信息。数据和模型之间的定量和定性协议表明系统的关键参数和相互作用,包括配对交互,从电子假型温度遵循参数。我们预计这一概念将与理解各种电子材料的超快响应相关,即使电子假型温度可能无法直接可测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号