首页> 外文期刊>RSC Advances >Structural effects of amphiphilic protein/gold nanoparticle hybrid based nanozyme on peroxidase-like activity and silver-mediated inhibition
【24h】

Structural effects of amphiphilic protein/gold nanoparticle hybrid based nanozyme on peroxidase-like activity and silver-mediated inhibition

机译:两亲蛋白/金纳米颗粒杂交基纳佐纳佐含有氧化酶样活性和银介导的抑制的结构作用

获取原文
           

摘要

Understanding structure–property correlations of nanozymes is critical in the rational design and fabrication of nanozymes with effective activity and smart multifunction. Here, an amphiphilic protein, β-casein, was chosen as a flexible modifier to fabricate a β-casein–AuNP hybrid nanozyme. The physicochemical properties including protein surface density and particle sizes can be easily controlled by the molar ratio of [precursor]/[protein]. Then, the structure–property correlation of the nanozyme was systematically investigated. Both the surface density of the protein and the nanoparticle size influence the peroxidase-like activity and silver-mediated inhibition. β-Casein–AuNP with a moderate AuNP core size and protein surface density has the lowest apparent K _(m) value of CM–AuNPs with TMB and H _(2) O _(2) , and hence the highest enzyme activity. Furthermore, the silver ion has been found to selectively inhibit the catalytic activity of β-casein–AuNPs due to the capping microenvironment provided by the protein. Since the bound silver ions can be effectively reduced to Ag ~(0) by protein on the AuNP surface, the highest inhibition potency by silver is obtained for a β-casein–AuNP nanozyme with the lowest protein surface density and largest particle size. Importantly, a β-casein–AuNP (4.3 nm) based silver sensor is highly sensitive for sensing silver ions with a wide linear range of 0.1–10 μM, and has a low detection limit of 10 nM. The fundamental understanding of the structure–property relationship of nanozymes could provide guidance in the further development of easily prepared, effective, and low-cost nanozymes and their utilization in numerous areas.
机译:了解纳佐的结构性质相关性在具有有效活性和智能多功能的纳米酶的合理设计和制造中至关重要。这里,选择两亲蛋白质,β-酪蛋白,作为柔性改性剂制备β-酪蛋白-AUNP杂交纳米酶。可以容易地通过[前体] / [蛋白]的摩尔比来容易地控制包括蛋白质表面密度和颗粒尺寸的物理化学性质。然后,系统地研究了纳佐的结构性质相关性。蛋白质的表面密度和纳米粒子尺寸的表面密度都影响过氧化物酶样活性和银介导的抑制作用。 β-酪蛋白-AUNP具有中等的AUNP核心尺寸和蛋白质表面密度具有CM-AUNP的最低表观k _(m)值,具有TMB和H _(2)O _(2),因此最高的酶活性。此外,已经发现银离子选择性地抑制由于蛋白质提供的封端微环境的β-酪蛋白-AUnps的催化活性。由于在AUNP表面上通过蛋白质可以有效地减少到Ag〜(0)中,因此用蛋白质表面密度最低和最大粒度的β-酪蛋白-AUNP纳佐中获得银的最高抑制效力。重要的是,一种β-酪蛋白-AUNP(4.3nm)的银传感器对于感测银离子的宽线性范围为0.1-10μm,并且具有10nm的低检测限。对纳佐结构性质关系的根本理解可以在进一步发展易于制备,有效和低成本的纳佐中的进一步发展以及它们在许多区域的利用方面提供指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号