首页> 外文期刊>RSC Advances >Three-dimensionally microporous and highly biocompatible bacterial cellulose–gelatin composite scaffolds for tissue engineering applications
【24h】

Three-dimensionally microporous and highly biocompatible bacterial cellulose–gelatin composite scaffolds for tissue engineering applications

机译:三维微孔和高度生物相容性细菌纤维素 - 明胶复合支架,用于组织工程应用

获取原文
           

摘要

In the current study, highly porous and biocompatible regenerated bacterial cellulose–gelatin (rBC–G) composite scaffolds were fabricated for tissue engineering applications. The scaffolds were prepared from porogen added composite solution of BC–G using a casting and leaching approach. The structural characterization of the scaffolds was carried out through field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). FE-SEM images showed the presence and interconnectivity of pores, while FT-IR and XPS spectra confirmed the composite chemistry of the scaffolds. The observed high porosity and rapid swelling of the scaffolds ensure their nutrient exchange ability during practical applications. In vitro biological tests showed that animal fibroblast cells (NIH 3T3) adhered to and proliferated well on the rBC–G composite scaffolds. Cell penetration assessed by Confocal microscopy indicated up to 200 μm infiltration after 7 days of incubation, suggesting the suitability of the scaffolds for three-dimensional cell culture. The enhanced expression of metalloproteases (MMPs) showed that prolonged cell incubation can lead to extracellular matrix (ECM) production inside the 3D rBC–G scaffolds. These results demonstrated that our 3D rBC–G composite scaffolds are candidates for future biomedical applications, including tissue regeneration.
机译:在目前的研究中,为组织工程应用制造了高度多孔和生物相容性再生细菌纤维素 - 明胶(RBC-G)复合支架。使用铸造和浸出方法由BC-G的致孔加入复合溶液制备支架。通过场发射扫描电子显微镜(Fe-SEM),傅里叶变换红外光谱(FT-IR)和X射线光电子谱(XPS)进行支架的结构表征。 FE-SEM图像显示孔的存在和互连,而FT-IR和XPS光谱证实了支架的复合化学化学。观察到的高孔隙率和支架的快速肿胀可确保其在实际应用中的营养交换能力。体外生物试验表明,在RBC-G复合支架上粘附和增殖孔的动物成纤维细胞(NIH 3T3)。通过共聚焦显微镜评估细胞渗透性在孵育7天后渗透至200μm渗透,表明支架对三维细胞培养的适用性。金属蛋白酶(MMP)的增强表达显示,延长的细胞孵育可以导致3D RBC-G支架内的细胞外基质(ECM)产生。这些结果表明,我们的3D RBC-G复合脚手架是未来生物医学应用的候选者,包括组织再生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号