首页> 外文期刊>RSC Advances >Control of SrO buffer-layer formation on Si(001) using the pulsed-laser deposition technique
【24h】

Control of SrO buffer-layer formation on Si(001) using the pulsed-laser deposition technique

机译:使用脉冲激光沉积技术控制Si(001)上的SRE缓冲层形成

获取原文
           

摘要

The deoxidation and passivation of a silicon surface represents one of the most important steps in the successful integration of functional oxides with silicon. Due to its reactivity and dissimilar properties with respect to oxides, silicon surfaces are conditioned using various buffer systems. Despite the quality of the resulting surface, these Sr-based buffers have not been commercialized because of the reactivity of the metallic Sr. SrO has demonstrated properties that are competitive with metallic Sr, but a successful integration with silicon has not yet been proven. In the present study we have determined the optimal pulsed-laser deposition (PLD) conditions for the SrO-induced deoxidation of a silicon surface, which results in a 2 × 1 reconstructed surface. Additionally, the as-prepared surface is oxide-free and atomically flat. The results show that the amount of SrO plays the most critical role in the optimization of the whole process. Deposited in batch mode, the amount of SrO affects the morphologies of the surfaces, which change from a dimerized surface to SrO islands and a polycrystalline layer in the final stage. However, in the case of an insufficient amount of deposited SrO, pits are formed on the surface, drastically increasing its roughness. The successful optimization of the PLD conditions for the formation of a SrO buffer layer opens a new pathway for interfacing oxides with silicon.
机译:硅表面的脱氧和钝化代表了与硅成功集成功能氧化物的最重要步骤之一。由于其相对于氧化物的反应性和异常性质,使用各种缓冲系统进行硅表面。尽管所得表面的质量,但由于金属Sr的反应性,这些基于SR的缓冲剂尚未商业化。SRO已经证明了与金属SR具有竞争力的性质,但尚未证明与硅的成功集成尚未得到证实。在本研究中,我们已经确定了用于硅表面的SRO诱导的脱氧的最佳脉冲激光沉积(PLD)条件,这导致2×1重建表面。另外,如制备的表面是无氧和原子平的。结果表明,SRO的数量在整个过程的优化中起最关键的作用。以批量模式沉积,SrO的量影响表面的形态,从而从决定表面与最终阶段中的多晶层改变。然而,在沉积的SrO量不足的情况下,在表面上形成凹坑,急剧增加其粗糙度。用于形成SRO缓冲层的PLD条件的成功优化为用硅接口氧化物打开新的途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号