...
首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Cold cloud microphysical process rates in a global chemistry–climate model
【24h】

Cold cloud microphysical process rates in a global chemistry–climate model

机译:全球化学气候模型中的冷云微微物理过程率

获取原文
           

摘要

Microphysical processes in cold clouds which act as sources or sinks of hydrometeors below 0? ° C control the ice crystal number concentrations (ICNCs) and in turn the cloud radiative effects. Estimating the relative importance of the cold cloud microphysical process rates is of fundamental importance to underpin the development of cloud parameterizations for weather, atmospheric chemistry, and climate models and to compare the output with observations at different temporal resolutions. This study quantifies and investigates the ICNC rates of cold cloud microphysical processes by means of the chemistry–climate model EMAC (ECHAM/MESSy Atmospheric Chemistry) and defines the hierarchy of sources and sinks of ice crystals. Both microphysical process rates, such as ice nucleation, aggregation, and secondary ice production, and unphysical correction terms are presented. Model ICNCs are also compared against a satellite climatology. We found that model ICNCs are in overall agreement with satellite observations in terms of spatial distribution, although the values are overestimated, especially around high mountains. The analysis of ice crystal rates is carried out both at global and at regional scales. We found that globally the freezing of cloud droplets and convective detrainment over tropical land masses are the dominant sources of ice crystals, while aggregation and accretion act as the largest sinks. In general, all processes are characterized by highly skewed distributions. Moreover, the influence of (a)?different ice nucleation parameterizations and (b)?a future global warming scenario on the rates has been analysed in two sensitivity studies. In the first, we found that the application of different parameterizations for ice nucleation changes the hierarchy of ice crystal sources only slightly. In the second, all microphysical processes follow an upward shift in altitude and an increase by up to 10?% in the upper troposphere towards the end of the 21st century.
机译:冷云中的微球种过程,其作为0的水分料来源或水槽散落? °C控制冰晶号浓度(ICNC),反过来云辐射效果。估计寒冷云微微物理过程率的相对重要性是基本重要性,对天气,大气化学和气候模型的云参数化的发展,并将输出与不同时间分辨率的观察结果进行比较。本研究通过化学气候模型EMAC(ECHAM /凌乱大气化学)来定量和研究冷云微手理过程的ICNC速率,并定义冰晶源的层次结构和冰晶水池。介绍了诸如冰成核,聚集和二次冰的微微物理过程率,以及不良校正项。型号ICNC也与卫星气候学相比。我们发现,在空间分布方面,ICNC模型与卫星观察结果进行了总体协议,尽管这些值高估,尤其是高山。冰晶速率分析在全球和区域尺度上进行。我们发现全球冻结云液滴和热带地块的对流剥落是冰晶的主要来源,而聚集和增值是最大的水槽。通常,所有过程的特征在于高度偏斜的分布。此外,(a)的影响?不同的冰成核参数化和(b)?在两个敏感性研究中已经分析了该率的未来全球变暖情景。首先,我们发现对冰核的不同参数化的应用仅稍微改变冰晶源的层次结构。在第二个中,所有微球种过程沿着高度向上换档,在21世纪末,上层对流层上的高达10?%增加到10?%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号