首页> 外文期刊>Quantum Beam Science >The Helical Magnet MnSi: Skyrmions and Magnons
【24h】

The Helical Magnet MnSi: Skyrmions and Magnons

机译:螺旋磁铁MNSI:Skyrmions和Magnons

获取原文
           

摘要

Since the late 1970s, MnSi has played a major role in developing the theory of helical magnets in non-centrosymmetric materials showing the Dzyaloshinsky-Moriya interaction (DMI). With a long helimagnetic pitch of 175 ? as compared to the lattice d-spacing of 4.55 ?, it was ideal for performing neutron studies, especially as large single crystals could be grown. A (B-T)-phase diagram was measured, and in these studies, under the application of a field of about 180 mT perpendicular to the scattering vector Q, a so-called A-phase in the B-T phase diagram was found and first interpreted as a re-orientation of the magnetic helix. After the surprising discovery of the skyrmion lattice in the A-phase in 2009, much interest arose due to the rigidity of the skyrmionic lattice, which is only loosely bound to the crystal lattice, and therefore only relatively small current densities can already induce a motion of this lattice. A very interesting approach to even better understand the complex structures in the phase diagram is to measure and model the spin excitations in MnSi. As the helimagnetic state is characterized by a long pitch of about 175 ?, the associated characteristic excitations form a band structure due to Umklapp scattering and can only be observed at very small Q with energies below 1 meV. Similarly, the excitations of the skyrmion lattice are very soft and low-energetic. We investigated the magnons in MnSi in the whole (B,T)-phase diagram starting in the single-k helimagnetic state by applying a small magnetic field, B = 100 mT. This way, the complexity of the magnon spectrum is significantly reduced, allowing for a detailed comparison of the data with theory, resulting in a full theoretical understanding of the spin system of MnSi in all its different magnetic phases.
机译:自20世纪70年代末以来,MNSI在开发非加索对称材料中的螺旋磁体理论方面发挥了重要作用,示出了Dzyaloshinsky-Moriya相互作用(DMI)。有175岁的长直升机间距?与4.55的晶格D-间距相比,它是表演中子研究的理想选择,尤其是可以种植大的单晶。测量(BT)静成图,并且在这些研究中,在垂直于散射载体Q的约180mt的施加下,发现了BT相图中所谓的A相,并首先将其解释为磁螺旋的重新定位。在2009年的A相中令人惊讶地发现Skyrmion格子之后,由于Skyrmionic格子的刚性而产生了很多兴趣,这仅是对晶格松散地绑定的,因此只有相对较小的电流密度可能已经引起运动这个格子。一种非常有趣的方法,即甚至更好地理解相图中的复杂结构是测量和模拟MNSI中的旋转激励。由于直升机状态的特征在于约175的长间距?,相关的特征激励形成由于UMKLAPP散射引起的带结构,并且只能在非常小的Q下观察到1 meV的能量。同样,Skyrmion格子的激励非常柔软,低充​​电。我们通过施加小磁场,在单k先天线状态下,在单百分之一的磁场中探讨了MNSI中的MNSI中的胶铁器,B = 100 mt。这样,MAGNON光谱的复杂性显着降低,允许与理论的数据进行详细比较,从而完全理论上在所有不同的磁阶段中对MNSI的旋转系统的理论理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号