...
首页> 外文期刊>Earthquake Engineering & Structural Dynamics >Large-scale real-time hybrid simulation involving multiple experimental substructures and adaptive actuator delay compensation
【24h】

Large-scale real-time hybrid simulation involving multiple experimental substructures and adaptive actuator delay compensation

机译:涉及多个实验子结构和自适应执行器延迟补偿的大规模实时混合仿真

获取原文
获取原文并翻译 | 示例
           

摘要

Real-time hybrid simulation provides a viable method to experimentally evaluate the performance of structural systems subjected to earthquakes. The structural system is divided into substructures, where part of the system is modeled by experimental substructures, whereas the remaining part is modeled analytically. The displacements in a real-time hybrid simulation are imposed by servo-hydraulic actuators to the experimental substructures. Actuator delay compensation has been shown by numerous researchers to vitally achieve reliable real-time hybrid simulation results. Several studies have been performed on servo-hydraulic actuator delay compensation involving single experimental substructure with single actuator. Research on real-time hybrid simulation involving multiple experimental substructures, however, is limited. The effect of actuator delay during a real-time hybrid simulation with multiple experimental substructures presents challenges. The restoring forces from experimental substructures may be coupled to two or more degrees of freedom (DOF) of the structural system, and the delay in each actuator must be adequately compensated. This paper first presents a stability analysis of actuator delay for real-time hybrid simulation of a Multiple-DOF linear elastic structure to illustrate the effect of coupled DOFs on the stability of the simulation. An adaptive compensation method then proposed for the stable and accurate control of multiple actuators for a real-time hybrid simulation. Real-time hybrid simulation of a two-story four-bay steel moment-resisting frame with large-scale magneto-rheological dampers in passive-on mode subjected to the design basis earthquake is used to experimentally demonstrate the effectiveness of the compensation method in minimizing actuator delay in multiple experimental substructures.
机译:实时混合仿真提供了一种可行的方法,可以通过实验评估遭受地震的结构系统的性能。结构系统分为子结构,其中系统的一部分通过实验子结构建模,而其余部分通过分析建模。实时液压混合仿真中的位移是由伺服液压执行器施加到实验子结构上的。许多研究人员已经表明,执行器延迟补偿可以切实地实现可靠的实时混合仿真结果。关于伺服液压执行器延迟补偿的一些研究已经完成,涉及单个实验子结构和单个执行器。但是,涉及多个实验子结构的实时混合仿真的研究是有限的。在具有多个实验子结构的实时混合仿真过程中,执行器延迟的影响带来了挑战。来自实验子结构的恢复力可能会耦合到结构系统的两个或多个自由度(DOF),并且每个执行器中的延迟必须得到适当补偿。本文首先介绍了用于多自由度线性弹性结构实时混合仿真的执行器延迟稳定性分析,以说明耦合自由度对仿真稳定性的影响。然后提出了一种自适应补偿方法,用于实时混合仿真的多个执行器的稳定和精确控制。在设计基准地震作用下,采用被动启动模式的带有大型磁流变阻尼器的两层四托架钢制抗弯框架的实时混合仿真,通过实验证明了补偿方法在最小化地震中的有效性多个实验子结构中的执行器延迟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号