...
首页> 外文期刊>Energy and Buildings >Effect of evaporation cooling on drying capillary active building materials
【24h】

Effect of evaporation cooling on drying capillary active building materials

机译:蒸发冷却对干燥毛细活性建筑材料的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The relevance of evaporation cooling on drying capillary active building materials is investigated through numerical simulation and non-destructive measurements. The drying rate results to be strongly related to the so-called wet bulb temperature, i.e. the temperature reached inside the sample during the early drying phase. It is shown that the faster the process occurs, the lower is the wet bulb temperature. The experiments are carried out inside a climatic chamber under controlled atmospheric conditions (temperature and relative humidity), using calcium silicate samples. The drying rates are determined by weighting the samples during time, while the surface temperature is measured via infrared thermography. A mathematical model describing transient heat and moisture transfer is implemented with the software COMSOL for 3D-simulation, and afterward validated by comparison with the measured data. The numerical solution presents a satisfactory agreement with the experimental results. A sensitivity analysis is also performed for different input parameters including convective heat transfer coefficient and uncertainties in material properties. The validated model is then used for simulation of a set of drying cases by varying the sample thickness and boundary conditions. Hence, the water content distribution inside the samples is investigated by determining boundary conditions and sample dimensions, in which nearly uniform water content can be obtained. In fact, uniform distribution is a prerequisite for an experimental method, recently studied by the authors, that aims at determining the water retention curve of capillary active materials by means of drying tests. (C) 2017 Elsevier B.V. All rights reserved.
机译:通过数值模拟和非破坏性测量研究了蒸发冷却对干燥的毛细管活性建筑材料的相关性。干燥速率的结果与所谓的湿球温度密切相关,即,在早期干燥阶段样品内部达到的温度。结果表明,过程进行得越快,湿球温度就越低。实验是在气候室内,在受控的大气条件(温度和相对湿度)下使用硅酸钙样品进行的。通过在一段时间内对样品进行称重来确定干燥速率,而表面温度则通过红外热成像法进行测量。使用COMSOL软件进行3D模拟,实现了描述瞬态传热和水分传递的数学模型,随后通过与测量数据进行比较进行了验证。数值解与实验结果吻合良好。还针对不同的输入参数(包括对流传热系数和材料特性的不确定性)执行灵敏度分析。然后,通过更改样品厚度和边界条件,将经过验证的模型用于一组干燥案例的仿真。因此,通过确定边界条件和样品尺寸来研究样品内部的水含量分布,从而可以获得几乎均匀的水含量。实际上,均匀分布是作者最近研究的一种实验方法的先决条件,该方法旨在通过干燥试验确定毛细管活性材料的保水曲线。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号