...
首页> 外文期刊>Energy Conversion & Management >Energy and exergy analysis of MSW-based IGCC power/ polygeneration systems
【24h】

Energy and exergy analysis of MSW-based IGCC power/ polygeneration systems

机译:基于MSW的IGCC电源/多种式系统的能量和漏洞分析

获取原文
获取原文并翻译 | 示例
           

摘要

Since municipal solid waste (MSW) is a negatively priced, abundant, and essentially renewable feedstock, energy recovered from MSW is a useful technology to reduce the consumption of fossil fuels, and also reduces the expenses needed to dispose of MSW. Three configurations of MSW-based IGCC power system (Design 1), MSWbased IGCC polygeneration system (Design 2), and CaO-based IGCC polygeneration system (Design 3) are proposed. Design 1 uses a combination of an identified MSW gasifier, an integrated intermittent chemical-loop air separation (IICLAS), and Rankine and Brayton cycles to generate electricity and achieve the high concentration of CO2 emissions around 93.3%-94.7%. The process for co-production of DME and MeOH in Design 2, which replaces the Rankine cycle in Design 1, could increase the net energy efficiency of Design 1 by 71.6%, but the total CO2 emissions from Design 2 are merely 7.97% of Design 1. The calcium looping gasification (CaLG) process in Design 3, which replaces the MSW gasifier in Design 2, could increase the production rate of DME of Design 2 by 12.5%. The CO2 concentration from the calcinator in Design 3 is higher than CO2 concentration in flue gas from Designs 1 and 2 by 2.0%-3.5%. Through exergy analysis, the overall exergy efficiency of Design 3 is lower than Designs 1 and 2 by 3.2%-10.1% due to the exergy destruction rate and ratio in the gasification zone of Design 3 higher than other designs. The GaLG process could increase the DME yield as well as the outlet CO2 concentration, but this approach design induces a higher exergy loss.
机译:自市级固体废物(MSW)是一种负面的价格,丰富,且基本上可再生的原料,从MSW中恢复的能量是减少化石燃料消耗的有用技术,并且还减少了处置MSW所需的费用。提出了三种基于MSW的IGCC电力系统(设计1),MSWBASED IGCC多项式系统(设计2)和CAO的IGCC多元系统(设计3)的配置。设计1使用鉴定的MSW气化器的组合,集成间歇性化学环空气分离(IICLAS),以及兰氏峰和布雷顿循环,以产生电力并达到约93.3%-94.7%的高浓度的二氧化碳排放量-94.7%。 DME和MeOH在设计2中的共同生产的过程,它取代了设计1中的兰氏藻循环,可以提高设计的净能量效率为71.6%,但设计2的总二氧化碳排放仅仅是设计的7.97% 1.设计3中的钙循环气化(CALG)过程,它取代了设计2中的MSW气化器,可以将DME设计2的生产速度提高12.5%。从设计3中的煅烧剂的CO 2浓度高于来自设计1和2的烟道气中的CO 2浓度2.0%-3.5%。通过Deerveny分析,由于设计3高于其他设计,设计3的整体漏洞效率低于设计1和2%-10.1%。 GALG工艺可以增加DME产量以及出口CO2浓度,但这种方法设计诱导更高的漏洞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号