首页> 外文期刊>Energy Conversion & Management >SIMULATION AND OPTIMIZATION OF ENERGY SYSTEMS FOR IN-BIN DRYING OF CANOLA GRAIN (RAPESEED)
【24h】

SIMULATION AND OPTIMIZATION OF ENERGY SYSTEMS FOR IN-BIN DRYING OF CANOLA GRAIN (RAPESEED)

机译:油菜籽粒(油菜籽)箱内干燥能源系统的模拟和优化

获取原文
获取原文并翻译 | 示例
           

摘要

Energy utilization systems optimization and management strategies for in-bin drying of canola were investigated by using a validated computer simulation model and typical weather data for a prairie location in North America. The use of different energy systems, including natural gas, propane, electricity, solar energy, and combined natural gas and solar energy for drying grain within 15 days with airflow rates of 0.5-2 m~3/min t, initial grain moisture contents of 13, 16 and 19%, and three harvest dates in August, September and October, was simulated for 10% and 8% moisture contents average-dry and through-dry policies. The drying systems were optimized by considering the total annual cost of a drying system within set bounds of drying time ( ≤ 15 days) and spoilage index (SI < 1.0). Continuous fan operation with 1.5-2 m~3/min t ambient air with about 9-26 MJ/t fan energy consumption was required to dry canola grain to 10% and 8% average-dry and through-dry moisture contents in 15 days or less August at 19% initial moisture content or less. Supplemental heat, by raising the ambient temperature by 5-10℃, maintaining the plenum temperature at 20℃ and solar heating, must be applied to successfully dry the product in September and October. Solar heating for drying was found to be more cost effective than other supplemental heat systems provided a well designed flat-plate solar collector for air heating can be found for use in locations with good solar energy availability. Heating the drying air with natural gas or propane was the cost effective for situations where the use of conventional energy systems is preferable to renewable energy sources in grain drying operation.
机译:通过使用经过验证的计算机模拟模型和北美大草原地区的典型天气数据,对油菜籽在箱内干燥中的能源利用系统优化和管理策略进行了研究。使用不同的能源系统,包括天然气,丙烷,电力,太阳能以及天然气和太阳能的组合,在15天内以0.5-2 m〜3 / min t的气流速率干燥谷物,谷物的初始含水量为分别模拟了13%,16%和19%的收成,以及8月,9月和10月的三个收获日期,分别针对平均干燥和全程干燥的10%和8%水分含量。通过在设定的干燥时间(≤15天)和腐败指数(SI <1.0)的范围内考虑干燥系统的年度总成本来优化干燥系统。要在15天的时间内将芥花籽油干燥至10%和8%的平均干燥和全干水分含量,需要以1.5-2 m〜3 / min的环境空气和约9-26 MJ / t的风扇能耗进行连续风扇操作8月或以下,初始水分含量不超过19%。必须补充热量,通过将环境温度升高5-10℃,将通风温度保持在20℃并进行太阳能加热,才能在9月和10月成功干燥产品。可以发现,用于干燥的太阳能加热系统比其他辅助加热系统更具成本效益,前提是可以找到设计良好的平板式太阳能集热器用于空气加热,以用于太阳能可用性良好的地区。对于在谷物干燥操作中使用常规能源系统优于可再生能源的情况,用天然气或丙烷加热干燥空气具有成本效益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号