...
首页> 外文期刊>Energy & environmental science >Novel phenazine crystals enable direct electron transfer to methanogens in anaerobic digestion by redox potential modulation
【24h】

Novel phenazine crystals enable direct electron transfer to methanogens in anaerobic digestion by redox potential modulation

机译:新型吩嗪晶体可通过氧化还原电势调节在厌氧消化中将电子直接转移至产甲烷菌

获取原文
获取原文并翻译 | 示例
           

摘要

With one billion tons of methane produced annually by microorganisms, biogas production can be appreciated both for its role in global organic matter turnover and as an energy source for humankind. The importance of electron transfer from electrically conductive surfaces or from bacteria to methanogenic Archaea has been implicated in widespread commercial anaerobic digestion processes, though a mechanism for reception of electrons from conductive surfaces or pili by methanogens has never been demonstrated. Here we describe a novel crystalline form of the synthetic phenazine neutral red that harvests electrons from reduced inorganic and organic microbial sources in anaerobic environments and makes them available to methanogenic Archaea. The novel crystalline form is so effective at harvesting reducing equivalents because it displays a potential for reduction 444 mV higher than the soluble form (E' = 70 mV). Neutral red molecules solubilised in the reduced state by protonation at the point of methanogen cell contact with the crystal surface deliver electrons to methanogens at a negative midpoint potential (E' = -375 mV). We demonstrate that soluble neutral red delivers reducing equivalents directly to the membrane bound HdrED heterodisulfide reductase of Methanosarcina, replenishing the CoM-SH and CoB-SH pool for methanogenesis and generating proton motive force. An order of magnitude increase in methane production is recorded in pure acetate fed Methanosarcina and coal and food waste fed mixed cultures in the laboratory. The phenomenon is also demonstrated at field scale in a sub-bituminous coal seam 80 m below ground level.
机译:微生物每年产生十亿吨甲烷,沼气生产因其在全球有机物周转中的作用以及作为人类的能源而受到赞赏。电子从导电表面或细菌到产甲烷的古细菌的转移的重要性与广泛的商业厌氧消化过程有关,尽管从未发现过通过产甲烷菌从导电表面或菌毛接收电子的机制。在这里,我们描述了一种合成的吩嗪中性红的新型晶体形式,该晶体在厌氧环境中从还原的无机和有机微生物源中收集电子,并将其提供给产甲烷的古生菌。新的结晶形式在收获还原当量方面是如此有效,因为它显示出比可溶形式(E'= 70 mV)高444 mV的还原潜力。在产甲烷菌与晶体表面接触时,通过质子化作用以还原状态溶解的中性红色分子以负中点电位(E'= -375 mV)将电子传递给产甲烷菌。我们证明可溶性中性红直接提供减少等效物到膜结合的甲烷八叠球菌的HdrED异二硫键还原酶,补充CoM-SH和CoB-SH池用于产甲烷作用并产生质子原动力。在实验室中,在纯乙酸盐喂养的甲烷甲烷藻和煤和食品废物的混合培养物中,甲烷的产量增加了一个数量级。该现象还在地面以下80 m的次烟煤层中得到了证实。

著录项

  • 来源
    《Energy & environmental science》 |2016年第2期|644-655|共12页
  • 作者单位

    Univ New S Wales, Sch Biotechnol & Biomol Sci, High St, Sydney, NSW 2052, Australia;

    Univ Bonn, Inst Microbiol & Biotechnol, Meckenheimer Allee 168, D-53115 Bonn, Germany|Radboud Univ Nijmegen, IWWR, Dept Microbiol, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands;

    Univ New S Wales, Sch Biotechnol & Biomol Sci, High St, Sydney, NSW 2052, Australia;

    Univ New S Wales, Sch Biotechnol & Biomol Sci, High St, Sydney, NSW 2052, Australia|Univ Southern Denmark, Dept Biol, Campusvej 55, DK-5230 Odense, Denmark;

    Univ Bonn, Inst Microbiol & Biotechnol, Meckenheimer Allee 168, D-53115 Bonn, Germany;

    Univ New S Wales, Sch Mat Sci & Engn, High St, Sydney, NSW 2052, Australia;

    Univ New S Wales, Sch Biotechnol & Biomol Sci, High St, Sydney, NSW 2052, Australia;

    Univ New S Wales, Sch Biotechnol & Biomol Sci, High St, Sydney, NSW 2052, Australia;

    Univ New S Wales, Sch Biotechnol & Biomol Sci, High St, Sydney, NSW 2052, Australia;

    Univ New S Wales, Mark Wainwright Analyt Ctr, High St, Sydney, NSW 2052, Australia;

    Univ New S Wales, Mark Wainwright Analyt Ctr, High St, Sydney, NSW 2052, Australia;

    Univ New S Wales, Sch Mat Sci & Engn, High St, Sydney, NSW 2052, Australia;

    Univ Bonn, Inst Microbiol & Biotechnol, Meckenheimer Allee 168, D-53115 Bonn, Germany;

    Univ New S Wales, Sch Biotechnol & Biomol Sci, High St, Sydney, NSW 2052, Australia|Tech Univ Munich, Urban Water Syst Engn, D-85748 Garching, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号