首页> 外文期刊>Energy & environmental science >Modeling an integrated photoelectrolysis system sustained by water vapor
【24h】

Modeling an integrated photoelectrolysis system sustained by water vapor

机译:建模由水蒸气维持的集成光电解系统

获取原文
获取原文并翻译 | 示例
           

摘要

Two designs for an integrated photoelectrolysis system sustained by water vapor have been investigated using a multi-physics numerical model that accounts for charge and species conservation, electron and ion transport, and electrochemical processes. Both designs leverage the use of a proton-exchange membrane that provides conductive pathways for reactant/product transport and prevents product crossover. The resistive losses, product gas transport, and gas crossovers as a function of the geometric parameters of the two designs have been evaluated systematically. In these designs, minimization of pathways in the membrane that can support the diffusive transport of product gases from the catalyst to the gas-collecting chamber was required to prevent supersaturation of hydrogen or oxygen gases at the Nafion/catalyst interface. Due to the small, thin membrane layer that was required, a small electrode width (<300 μm) was also required to produce low resistive losses in the system. Alternatively, incorporation of a structured membrane that balances the gas transport and ionic transport allows the maximum electrode width to be increased to dimensions as large as a few millimeters. Diffusive gas transport between the cathode and anode was the dominant source for crossover of the product gases under such circumstances. The critical dimension of the electrode required to produce acceptably low rates of product crossover was also investigated through the numerical modeling and device simulations.
机译:使用多物理场数值模型研究了由水蒸气维持的集成光电解系统的两种设计,该模型考虑了电荷和物种守恒,电子和离子传输以及电化学过程。两种设计都利用了质子交换膜的使用,该膜为反应物/产物的运输提供了传导途径,并防止了产物的交叉。根据两种设计的几何参数,已对电阻损耗,产品气体传输和气体交换进行了系统评估。在这些设计中,需要使能够支持产物气体从催化剂到气体收集腔的扩散传输的膜中的通道最小化,以防止Nafion /催化剂界面处的氢气或氧气过饱和。由于需要较小的薄膜层,因此还需要较小的电极宽度(<300μm)以在系统中产生低电阻损耗。替代地,结合平衡气体传输和离子传输的结构化膜允许最大电极宽度增加到几毫米的尺寸。在这种情况下,阴极和阳极之间的扩散气体传输是产物气体交叉的主要来源。还通过数值建模和设备仿真研究了产生可接受的低产品交叉速率所需的电极的临界尺寸。

著录项

  • 来源
    《Energy & environmental science》 |2013年第12期|3713-3721|共9页
  • 作者单位

    Beckman Institute, Kavli Nanoscience Institute, and Joint Center for Artificial Photosynthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA;

    Beckman Institute, Kavli Nanoscience Institute, and Joint Center for Artificial Photosynthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA;

    Beckman Institute, Kavli Nanoscience Institute, and Joint Center for Artificial Photosynthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号