...
首页> 外文期刊>Energy Exploration & Exploitation >Surface, Subsurface, and Deep Imaging: Acquisition, Processing, and Interpretation of Seismic and Acoustic Data
【24h】

Surface, Subsurface, and Deep Imaging: Acquisition, Processing, and Interpretation of Seismic and Acoustic Data

机译:地表,地下和深部成像:地震和声波数据的采集,处理和解释

获取原文
获取原文并翻译 | 示例
           

摘要

Fluids and gases are major elements of marine sedimentary systems, and they play an important role in static properties as well as dynamic changes in such systems as a function of geologic time and varying boundary conditions. Sedimentation and compaction drive the typical upward movement of fluids due to compaction and, together with dissolved or free gas, these fluids preferably follow permeable pathways from greater depth (e.g. from hydrocarbon reservoirs), or shallow depth (e.g. from biogenic gas production), towards the sea floor. These mass fluxes and cycles are associated with structural anomalies, which allow the migration of such fluids and gases at sufficient rates to supersede diffusional exchange between sediments and water column. Seismic methods are available as the only tool, which allows detailed two- and three dimensional imaging of geologic structures. Excess fluids and gases, anomalous pore pressure or metastable diagenetic components such as gashydrates can modify the seismic response, which in turn can be analyzed from structural disturbances, seismic properties of reflectors, or spatial distribution of sound velocity and attenuation. To understand the ongoing processes and to utilize this information for the collection of sea floor and sub-sea floor samples, spatial resolution must be adjusted to target sizes of objects related to the flow of fluids, as for example fault planes, fluid conduits, pockmarks, mounds, carbonate pavements, and shallow gashydrates. A concept to investigate fluid and gas cycles near the sediment/water interface requires an integration of sampling and surveying, and the combination of different seismoacoustic imaging techniques to trace fluid flow from deepest sources of several kilometres depth through the metastable gas-fluid phases to the shallow sub-sea floor and the surface, where the resolution must become successively higher to allow for specific sampling.
机译:流体和气体是海洋沉积系统的主要元素,它们在静态特性以及这些系统的动态变化(随地质时间和边界条件变化而变化)中起着重要作用。沉积和压实驱动流体由于压实而典型地向上运动,并且与溶解的或游离的气体一起,这些流体优选地沿着渗透路径从较大深度(例如,从碳氢化合物储层)或浅深度(例如,从生物气产生)进入海床。这些质量通量和循环与结构异常有关,结构异常允许此类流体和气体以足够的速率迁移,以取代沉积物和水柱之间的扩散交换。地震方法是唯一的工具,它可以对地质结构进行详细的二维和三维成像。过量的流体和气体,异常的孔隙压力或亚稳的成岩成分(例如水合物)会改变地震响应,进而可以从结构扰动,反射器的地震特性或声速和衰减的空间分布中进行分析。为了了解正在进行的过程并利用此信息来收集海底和海底样本,必须将空间分辨率调整为与流体流动相关的对象的目标大小,例如断层平面,流体管道,麻点,土墩,碳酸盐路面和浅水合物。研究沉积物/水界面附近的流体和气体循环的概念需要对采样和测量进行综合,并结合不同的地震声成像技术,以追踪从几公里深的最深源流经亚稳态气液相到流体的流体流动。浅海底和海底,分辨率必须逐次提高才能进行特定采样。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号