首页> 外文期刊>Energy & fuels >Experimental Investigation of Rice Straw and Model Compound Oxidative Pyrolysis by in Situ Diffuse Reflectance Infrared Fourier Transform and Coupled Thermogravimetry-Differential Scanning Calorimetry/Mass Spectrometry Method
【24h】

Experimental Investigation of Rice Straw and Model Compound Oxidative Pyrolysis by in Situ Diffuse Reflectance Infrared Fourier Transform and Coupled Thermogravimetry-Differential Scanning Calorimetry/Mass Spectrometry Method

机译:原稻漫反射红外傅里叶变换-热重分析-差示扫描量热/质谱联用技术对稻草和模型化合物氧化热解的实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

The oxidative pyrolysis properties of cellulose, xylan, lignin, and rice straw were studied by thermogravimetric analysis-differential scanning calorimetry (TGA-DSC) coupled with mass spectrometry. The mass loss, reaction heat, and volatile release properties were analyzed to reveal the role of oxygen in the biomass thermal degradation process. Differential thermogravimetry (DTG) results show that the primary mass loss peak was brought forward with the increase of the oxygen concentration for all samples as well as the peak value. Oxygen improved the degradation rate of lignocellulose. The oxidative pyrolysis processes of all four types of material were accompanied by energy consumption or release, generally divided into three stages: moisture release stage, primary pyrolysis stage, and char evolution or oxidation stage. The primary degradation of cellulose under inert and 1% O-2 atmospheres was distinctly endothermic. With the increase of the oxygen concentration, the endothermic peak decreased, while an exothermic peak dominated the oxidative process. Xylan and lignin showed an exothermic primary degradation peak even under an inert atmosphere at the primary pyrolysis stage, and with the increase of the oxygen concentration, the reaction heat released at the primary and char oxidation stage increased. Rice straw showed weak endothermic properties in the primary stage. Volatile compound analysis of oxidative pyrolysis indicated that oxygen promoted the yields of water and permanent gas compounds, such as CO2, CO, and CH4. The yield of condensable compounds, such as benzene, reached a maximum at a mediate oxygen concentration, and too much oxygen would lead to being combusted out completely. Diffuse reflectance infrared Fourier transform (DRIFT) spectra of three model compounds and rice straw under inert and oxidative atmospheres indicated that oxygen played a less important role at a low-temperature stage, especially for cellulose, which was kind of a uniform structure with less active function groups. Heterogenous oxidation at a relatively high temperature (>400 degrees C) would lead to the degradation of some weak bonds and benefited the formation of an aromatic ring.
机译:通过热重分析-差示扫描量热法(TGA-DSC)结合质谱研究了纤维素,木聚糖,木质素和稻草的氧化热解性质。分析了质量损失,反应热和挥发性释放特性,以揭示氧气在生物质热降解过程中的作用。差示热重分析(DTG)结果表明,随着所有样品中氧浓度和峰值的增加,主要质量损失峰出现。氧气改善了木质纤维素的降解率。所有四种类型的材料的氧化热解过程都伴随着能量的消耗或释放,通常分为三个阶段:水分释放阶段,初级热解阶段和炭析出或氧化阶段。纤维素在惰性和1%O-2气氛下的主要降解是吸热的。随着氧气浓度的增加,吸热峰降低,而放热峰主导了氧化过程。木聚糖和木质素即使在惰性气氛下在初级热解阶段也显示出放热的初级降解峰,并且随着氧浓度的增加,在初级和焦炭氧化阶段释放的反应热增加。稻草在初期表现出较弱的吸热特性。氧化热解的挥发性化合物分析表明,氧气促进了水和永久性气体化合物(例如CO2,CO和CH4)的产率。在中等氧气浓度下,可冷凝化合物(例如苯)的收率达到最大值,并且过多的氧气会导致完全燃烧掉。三种模型化合物和稻草在惰性和氧化性气氛下的漫反射红外傅里叶变换(DRIFT)光谱表明,氧气在低温阶段的作用较小,特别是对于纤维素而言,氧气是一种均匀的结构,活性较低功能组。在较高温度(> 400摄氏度)下的异质氧化会导致某些弱键的降解,并有利于形成芳环。

著录项

  • 来源
    《Energy & fuels》 |2015年第julaaauga期|4361-4372|共12页
  • 作者单位

    Shanghai Jiao Tong Univ, Inst Thermal Engn, Biomass Energy Res Ctr, Shanghai 200240, Peoples R China;

    Shanghai Jiao Tong Univ, Inst Thermal Engn, Biomass Energy Res Ctr, Shanghai 200240, Peoples R China;

    Shanghai Jiao Tong Univ, Inst Thermal Engn, Biomass Energy Res Ctr, Shanghai 200240, Peoples R China;

    Shanghai Jiao Tong Univ, Inst Thermal Engn, Biomass Energy Res Ctr, Shanghai 200240, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号