...
首页> 外文期刊>Environmental Science & Technology >Degradation of Perfluoroalkyl Ether Carboxylic Acids with Hydrated Electrons: Structure-Reactivity Relationships and Environmental Implications
【24h】

Degradation of Perfluoroalkyl Ether Carboxylic Acids with Hydrated Electrons: Structure-Reactivity Relationships and Environmental Implications

机译:水合电子降解全氟烷基醚羧酸:结构-反应关系和环境意义。

获取原文
获取原文并翻译 | 示例
           

摘要

This study explores structure-reactivity relationships for the degradation of emerging perfluoroalkyl ether carboxylic acid (PFECA) pollutants with ultraviolet-generated hydrated electrons (e_(aq)~-). The rate and extent of PFECA degradation depend on both the branching extent and the chain length of oxygen-segregated fluoroalkyl moieties. Kinetic measurements, theoretical calculations, and transformation product analyses provide a comprehensive understanding of the PFECA degradation mechanisms and pathways. In comparison to traditional full-carbon-chain perfluorocarboxylic acids, the distinct degradation behavior of PFECAs is attributed to their ether structures. The ether oxygen atoms increase the bond dissociation energy of the C-F bonds on the adjacent -CF_2- moieties. This impact reduces the formation of H/F-exchanged polyfluorinated products that are recalcitrant to reductive defluorination. Instead, the cleavage of ether C-O bonds generates unstable perfluoroalcohols and thus promotes deep defluorination of short fluoroalkyl moieties. In comparison to linear PFECAs, branched PFECAs have a higher tendency of H/F exchange on the tertiary carbon and thus lower percentages of defluorination. These findings provide mechanistic insights for an improved design and efficient degradation of fluorochemicals.
机译:这项研究探讨了结构-反应性关系,通过紫外线生成的水合电子(e_(aq)〜-)降解新兴的全氟烷基醚羧酸(PFECA)污染物。 PFECA降解的速率和程度取决于氧分离的氟烷基部分的支化程度和链长。动力学测量,理论计算和转化产物分析提供了对PFECA降解机理和途径的全面理解。与传统的全碳链全氟羧酸相比,PFECA的独特降解行为归因于它们的醚结构。醚氧原子增加了相邻-CF_2-部分上C-F键的键解离能。这种影响减少了H / F交换的多氟化产物的形成,该产物对还原性脱氟不利。取而代之的是,醚C-O键的裂解产生不稳定的全氟醇,从而促进了短氟烷基部分的深度脱氟。与线性PFECA相比,支链PFECA在叔碳上具有较高的H / F交换趋势,因此脱氟百分比较低。这些发现为改进含氟化合物的设计和有效降解提供了机械方面的见解。

著录项

  • 来源
    《Environmental Science & Technology》 |2020年第4期|2489-2499|共11页
  • 作者单位

    Department of Chemical & Environmental Engineering University of California Riverside Riverside California 92521 United States;

    Department of Civil & Environmental Engineering University of Illinois at Urbana-Champaign Urbana Illinois 61801 United States;

    Department of Chemical & Environmental Engineering University of California Riverside Riverside California 92521 United States;

    Metabolomics Lab of Roy J. Carver Biotechnology Center University of Illinois at Urbana-Champaign Urbana Illinois 6I80I United States;

    Department of Chemical & Environmental Engineering and Materials Science & Engineering Program University of California Riverside Riverside California 92521 United States;

    Department of Chemical & Environmental Engineering University of California Riverside Riverside California 92521 United States Department of Civil & Environmental Engineering and Institute for Genomic Biology University of Illinois at Urbana-Champaign Urbana Illinois 61801 United States;

    Department of Chemicai & Environmental Engineering University of California Riverside Riverside California 92521 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号