首页> 外文期刊>Environmental Science & Technology >Transformation and Sorption of Illicit Drug Biomarkers in Sewer Systems: Understanding the Role of Suspended Solids in Raw Wastewater
【24h】

Transformation and Sorption of Illicit Drug Biomarkers in Sewer Systems: Understanding the Role of Suspended Solids in Raw Wastewater

机译:下水道系统中非法药物生物标志物的转化和吸附:了解原废水中悬浮固体的作用

获取原文
获取原文并翻译 | 示例
           

摘要

Sewer pipelines, although primarily designed for sewage transport, can also be considered as bioreactors. In-sewer processes may lead to significant variations of chemical loadings from source release points to the treatment plant influent. In this study, we assessed in-sewer utilization of growth substrates (primary metabolic processes) and transformation of illicit drug biomarkers (secondary metabolic processes) by suspended bio-mass. Sixteen drug biomarkers were targeted, including mephe-drone, methadone, cocaine, heroin, codeine, and tetrahydrocannabinol (THC) and their major human metabolites. Batch experiments were performed under aerobic and anaerobic conditions using raw wastewater. Abiotic biomarker transformation and partitioning to suspended solids and reactor wall were separately investigated under both redox conditions. A process model was identified by combining and extending the Wastewater Aerobic/anaerobic Transformations in Sewers (WATS) model and Activated Sludge Model for Xenobiotics (ASM-X). Kinetic and stoichiometric model parameters were estimated using experimental data via the Bayesian optimization method DREAM_(zs). Results suggest that biomarker transformation significantly differs from aerobic to anaerobic conditions, and abiotic conversion is the dominant mechanism for many of the selected substances. Notably, an explicit description of biomass growth during batch experiments was crucial to avoid significant overestimation (up to 385%) of aerobic biotransformation rate constants. Predictions of in-sewer transformation provided here can reduce the uncertainty in the estimation of drug consumption as part of wastewater-based epidemiological studies.
机译:下水道虽然主要设计用于污水运输,但也可以视为生物反应器。下水道过程可能导致从源排放点到污水处理厂进水的化学负载发生显着变化。在这项研究中,我们通过悬浮生物量评估了污水中生长底物的利用(主要代谢过程)和非法药物生物标记的转化(次要代谢过程)。靶向16种药物生物标志物,包括甲基苯丙胺,美沙酮,可卡因,海洛因,可待因和四氢大麻酚(THC)及其主要的人体代谢物。使用有氧废水在好氧和厌氧条件下进行批处理实验。在两种氧化还原条件下,分别研究了非生物生物标志物的转化和分配至悬浮固体和反应器壁的情况。通过组合和扩展下水道中的废水好氧/厌氧转化模型(WATS)和异源生物活性污泥模型(ASM-X),确定了过程模型。使用实验数据通过贝叶斯优化方法DREAM_(zs)估算动力学和化学计量模型参数。结果表明,生物标志物的转化从有氧到厌氧条件都显着不同,非生物转化是许多选定物质的主要机制。值得注意的是,批处理实验中生物量增长的明确描述对于避免明显过高估计好氧生物转化速率常数(高达385%)至关重要。作为基于废水的流行病学研究的一部分,此处提供的下水道转换预测可以减少药物消耗估算中的不确定性。

著录项

  • 来源
    《Environmental Science & Technology》 |2016年第24期|13397-13408|共12页
  • 作者单位

    Technical University of Denmark (DTU), Department of Environmental Engineering, Miljøvej 113, 2800 Kgs. Lyngby, Denmark;

    Technical University of Denmark (DTU), Department of Environmental Engineering, Miljøvej 113, 2800 Kgs. Lyngby, Denmark;

    Technical University of Denmark (DTU), Department of Environmental Engineering, Miljøvej 113, 2800 Kgs. Lyngby, Denmark;

    KWR Watercyde Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands;

    KWR Watercyde Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands;

    KWR Watercyde Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands;

    Technical University of Denmark (DTU), Department of Environmental Engineering, Miljøvej 113, 2800 Kgs. Lyngby, Denmark;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号