...
首页> 外文期刊>Environmental Science & Technology >Highly Efficient Hydrated Electron Utilization and Reductive Destruction of Perfluoroalkyl Substances Induced by Intermodular Interaction
【24h】

Highly Efficient Hydrated Electron Utilization and Reductive Destruction of Perfluoroalkyl Substances Induced by Intermodular Interaction

机译:高效的水合电子利用和通过代理相互作用诱导的全氟烷基物质的还原破坏

获取原文
获取原文并翻译 | 示例
           

摘要

Perfluoroalkyl substances (PFASs) are highly toxic synthetic chemicals, which are considered the most persistent organic contaminants in the environment. Previous studies have demonstrated that hydrated electron based techniques could completely destruct these compounds. However, in the reactions, alkaline and anaerobic conditions are generally required or surfactants are involved. Herein, we developed a simple binary composite, only including PFAS and hydrated electron source chemical. The system exhibited high efficiency for the utilization of hydrated electrons to decompose PFASs. By comparing the degradation processes of perfluorooctanoic acid (PFOA) in the presence of seven indole derivatives with different chemical properties, we could conclude that the reaction efficiency was dependent on not only the yield of hydrated electrons but also the interaction between PFOA and indole derivative. Among these derivatives, indole showed the highest degradation performance due to its relatively high ability to generate hydrated electrons, and more importantly, indole could form a hydrogen bonding with PFOA to accelerate the electron transfer. Moreover, the novel composite demonstrated high reaction efficiency even with coexisting humic substance and in a wide pH range (4-10). This study would deepen our understanding of the design of hydrated electron based techniques to treat PFAS-containing wastewater.
机译:全氟烷基物质(PFASS)是高度毒性的合成化学品,被认为是环境中最持久的有机污染物。以前的研究表明,水基电子技术可以完全破坏这些化合物。然而,在反应中,通常需要碱性和厌氧条件或涉及表面活性剂。在此,我们开发了一种简单的二进制复合材料,仅包括PFA和水合电子源化学品。该系统表现出利用水合电子来分解PFASS的高效率。通过比较全氟辛酸(PFOA)在具有不同化学性质的七种吲哚衍生物存在下的降解过程,我们可以得出结论,反应效率不仅取决于水合电子的产率,还取决于PFOA和吲哚衍生物之间的相互作用。在这些衍生物中,由于其相对高的产生水合电子能力,吲哚显示出最高的降解性能,更重要的是,吲哚可以与PFOA形成氢键以加速电子转移。此外,即使在共存​​腐殖质和宽的pH范围内(4-10),新型复合材料也表现出高反应效率。本研究将深化我们对含水基技术设计的理解,以治疗含PFA的废水。

著录项

  • 来源
    《Environmental Science & Technology》 |2021年第6期|3996-4006|共11页
  • 作者单位

    State Key Laboratory of Pollution Control and Resource Reuse School of the Environment Nanjing University Nanjing 210023 P. R. China;

    State Key Laboratory of Pollution Control and Resource Reuse School of the Environment Nanjing University Nanjing 210023 P. R. China;

    State Key Laboratory of Pollution Control and Resource Reuse School of the Environment Nanjing University Nanjing 210023 P. R. China State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control Nanjing Institute of Environmental Sciences Ministry of Ecology and Environment Nanjing 210042 P. R. China;

    State Key Laboratory of Pollution Control and Resource Reuse School of the Environment Nanjing University Nanjing 210023 P. R. China;

    Kuang Yarning Honors School and Institute for Brain Sciences Nanjing University Nanjing 210023 P.R.China;

    State Key Laboratory of Pollution Control and Resource Reuse School of the Environment Nanjing University Nanjing 210023 P. R China;

    State Key Laboratory of Pollution Control and Resource Reuse School of the Environment Nanjing University Nanjing 210023 P. R. China;

    State Key Laboratory of Pollution Control and Resource Reuse School of the Environment Nanjing University Nanjing 210023 P. R. China;

    Kuang Yarning Honors School and Institute for Brain Sciences Nanjing University Nanjing 210023 P.R. China;

    State Key Laboratory of Pollution Control and Resource Reuse School of the Environment Nanjing University Nanjing 210023 P. R. China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号