...
首页> 外文期刊>Environmental Science & Technology >Effect of Solution and Solid-Phase Conditions on the Fe(Ⅱ)-Accelerated Transformation of Ferrihydrite to Lepidocrocite and Goethite
【24h】

Effect of Solution and Solid-Phase Conditions on the Fe(Ⅱ)-Accelerated Transformation of Ferrihydrite to Lepidocrocite and Goethite

机译:固溶条件对Fe(Ⅱ)-加速水铁矿向纤铁矿和针铁矿转变的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Aqueous ferrous iron (Fe(Ⅱ)) accelerates the transformation of ferrihydrite into secondary, more crystalline minerals however the factors controlling the rate and, indeed, the underlying mechanism of this transformation process remain unclear. Here, we present the first detailed study of the kinetics of the Fe(Ⅱ)accelerated transformation of ferrihydrite to goethite, via lepidocrocite, for a range of pH and Fe(Ⅱ) concentrations and, from the results obtained, provide insight into the factors controlling the transformation rate and the processes responsible for transformation. A reaction scheme for the Fe(Ⅱ)-accelerated secondary mineralization of ferrihydrite is developed in which an Fe(Ⅱ) atom attaches to the ferrihydrite surface where it is immediately oxidized to Fe(Ⅲ) with the resultant electron transferred, sequentially, to other iron oxyhydroxide Fe(Ⅲ) atoms before release to solution as Fe(Ⅱ). This freshly precipitated Fe(Ⅲ) forms the nuclei for the formation of secondary minerals and also facilitates the ongoing uptake of Fe(Ⅱ) from solution by creation of fresh surface sites. The concentration of solid-associated Fe(Ⅱ) and the rate of transport of Fe(Ⅱ) to the oxyhydroxide, surface appear to determine which particular secondary minerals form and their rates of formation. Lepidocrocite growth is enhanced at lower solid-associated Fe(Ⅱ) concentrations while conditions leading to more rapid uptake of Fe(Ⅱ) from solution lead to higher goethite growth rates.
机译:亚铁水(Fe(Ⅱ))加速了水铁矿向次生结晶性矿物的转化,但控制速率的因素以及该转化过程的潜在机理仍不清楚。在此,我们首次详细研究了在一定的pH和Fe(Ⅱ)浓度范围内,铁水通过纤铁矿加速铁(II)转变为针铁矿的动力学,并从获得的结果中提供了对这些因素的认识。控制转化率和负责转化的过程。提出了铁(Ⅱ)促进次水铁矿二次矿化的反应方案,其中铁(Ⅱ)原子附着在铁水母表面,立即被氧化成铁(Ⅲ),电子依次转移到另一个羟基氧化铁中的Fe(Ⅲ)原子以Fe(Ⅱ)的形式释放到溶液中。这种新鲜沉淀的Fe(Ⅲ)形成了形成次生矿物质的核,并且还通过产生新的表面位点促进了溶液中对Fe(Ⅱ)的持续吸收。固态缔合的Fe(Ⅱ)的浓度和Fe(Ⅱ)向羟基氧化物的迁移速率似乎决定了哪种次生矿物的形成及其形成速率。在较低的固相结合Fe(Ⅱ)浓度下,铁云母的生长得到增强,而导致溶液中Fe(Ⅱ)更快吸收的条件导致针铁矿的生长速率更高。

著录项

  • 来源
    《Environmental Science & Technology》 |2014年第10期|5477-5485|共9页
  • 作者单位

    School of Civil and Environmental Engineering, University of New South Wales, UNSW Sydney New South Wales 2052 Australia;

    School of Civil and Environmental Engineering, University of New South Wales, UNSW Sydney New South Wales 2052 Australia;

    School of Civil and Environmental Engineering, University of New South Wales, UNSW Sydney New South Wales 2052 Australia;

    Australian Synchrotron, 800 Blackburn Rd, Clayton 3168 Australia;

    School of Civil and Environmental Engineering, University of New South Wales, UNSW Sydney New South Wales 2052 Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号