...
首页> 外文期刊>Environmental Science & Technology >Comparison of Energy Efficiency and Power Density in Pressure Retarded Osmosis and Reverse Electrodialysis
【24h】

Comparison of Energy Efficiency and Power Density in Pressure Retarded Osmosis and Reverse Electrodialysis

机译:压力滞后渗透和反向电渗析的能效和功率密度比较

获取原文
获取原文并翻译 | 示例
           

摘要

Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. This study compares the energy efficiency and power density performance of PRO and RED with simulated technologically available membranes for natural, anthropogenic, and engineered salinity gradients (seawater-river water, desalination brine-wastewater, and synthetic hypersaline solutions, respectively). The analysis shows that PRO can achieve both greater efficiencies (54-56%) and higher power densities (2.4-38 W/m~2) than RED (18-3896 and 0.77-1.2 W/m~2). The superior efficiency is attributed to the ability of PRO membranes to more effectively utilize the salinity difference to drive water permeation and better suppress the detrimental leakage of salts. On the other hand, the low conductivity of currently available ion exchange membranes impedes RED ion flux and, thus, constrains the power density. Both technologies exhibit a trade-off between efficiency and power density: employing more permeable but less selective membranes can enhance the power density, but undesired entropy production due to uncontrolled mixing increases and some efficiency is sacrificed. When the concentration difference is increased (i.e., natural→anthropogenic→engineered salinity gradients), PRO osmotic pressure difference rises proportionally but not so for RED Nemst potential, which has logarithmic dependence on the solution concentration. Because of this inherently different characteristic, RED is unable to take advantage of larger salinity gradients, whereas PRO power density is considerably enhanced. Additionally, high solution concentrations suppress the Donnan exclusion effect of the charged RED membranes, severely reducing the permselectivity and diminishing the energy conversion efficiency. This study indicates that PRO is more suitable to extract energy from a range of salinity gradients, while significant advancements in ion exchange membranes are likely necessary for RED to be competitive with PRO.
机译:减压渗透(PRO)和逆电渗析(RED)是新兴的基于膜的技术,可以将盐度梯度中的化学能转化为有用的功。两种方法的工作原理本质上是不同的:PRO中的可控混合是通过跨盐排斥膜的水渗透实现的,而RED是由跨带电膜的离子通量驱动的。这项研究比较了PRO和RED的能效和功率密度性能,以及针对自然,人为和工程盐度梯度(分别为海水-河水,淡化盐水-废水和合成高盐溶液)的模拟技术可用膜。分析表明,与RED(18-3896和0.77-1.2 W / m〜2)相比,PRO可以实现更高的效率(54-56%)和更高的功率密度(2.4-38 W / m〜2)。优异的效率归因于PRO膜能够更有效地利用盐度差来驱动水渗透并更好地抑制盐的有害泄漏。另一方面,目前可用的离子交换膜的低电导率阻碍了RED离子通量,因此限制了功率密度。两种技术都在效率和功率密度之间做出了权衡:采用更多可渗透但选择性较低的膜可以提高功率密度,但是由于不受控制的混合增加而产生了不希望的熵产生,并且牺牲了一些效率。当浓度差增加时(即自然→人为→工程盐度梯度),PRO渗透压差成比例增加,但对于RED Nemst电位则不是这样,这与溶液浓度成对数关系。由于这种固有的不同特性,RED无法利用较大的盐度梯度,而PRO功率密度却大大提高。此外,高浓度溶液会抑制带电RED膜的Donnan排斥作用,从而严重降低渗透选择性并降低能量转换效率。这项研究表明,PRO更适合从多种盐度梯度中提取能量,而离子交换膜的显着进步可能是RED与PRO竞争所必需的。

著录项

  • 来源
    《Environmental Science & Technology》 |2014年第18期|11002-11012|共11页
  • 作者单位

    Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States;

    Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号