...
首页> 外文期刊>Environmental Science & Technology >Biodegradation of Functionalized Nanocellulose
【24h】

Biodegradation of Functionalized Nanocellulose

机译:官能化纳米纤维素的生物降解

获取原文
获取原文并翻译 | 示例
           

摘要

Nanocellulose has attracted widespread interest for applications in materials science and biomedical engineering due to its natural abundance, desirable physicochemical properties, and high intrinsic mineralizability (i.e., complete biodegradability). A common strategy to increase dispersibility in polymer matrices is to modify the hydroxyl groups on nanocellulose through covalent functionalization, but such modification strategies may affect the desirable biodegradation properties exhibited by pristine nanocellulose. In this study, cellulose nanofibrils (CNFs) functionalized with a range of esters, carboxylic acids, or ethers exhibited decreased rates and extents of mineralization by anaerobic and aerobic microbial communities compared to unmodified CNFs, with etherified CNFs exhibiting the highest level of recalcitrance. The decreased biodegradability of functionalized CNFs depended primarily on the degree of substitution at the surface of the material rather than within the bulk. This dependence on surface chemistry was attributed not only to the large surface area-to-volume ratio of nanocellulose but also to the prerequisite surface interaction by microorganisms necessary to achieve biodegradation. Results from this study highlight the need to quantify the type and coverage of surface substituents in order to anticipate their effects on the environmental persistence of functionalized nanocellulose.
机译:由于其天然丰富,理想的物理化学性能和高内在可甲型(即,完全生物降解性),纳米纤维素引起了材料科学和生物医学工程中的应用的广泛兴趣。通过共价官能化将纳米纤维素的分散性提高分散性的常见策略是通过共价官能化改变纳米纤维素的羟基,但这种改性策略可能影响原始纳米纤维素的所需生物降解性能。在该研究中,与一系列酯,羧酸或醚官能化的纤维素纳米纤维(CNF)与未经修饰的CNFS相比,厌氧和有氧微生物微生物群落的速率降低和矿化的矿物化的速率和矿化的范围,以醚化的CNFS表现出最高水平的重核水平。官能化CNF的生物降解性降低主要取决于材料表面的取代度而不是体积内。这种对表面化学的依赖性不仅归因于纳米纤维素的大表面积到体积比,而且归因于实现生物降解所需的微生物的先决条件相互作用。本研究结果突出了量化表面取代基的类型和覆盖的需要,以便预测其对官能化纳米纤维素的环境持久性的影响。

著录项

  • 来源
    《Environmental Science & Technology》 |2021年第15期|10744-10757|共14页
  • 作者单位

    Department of Chemistry Johns Hopkins University Baltimore Maryland 21218 United States;

    Department of Chemistry Johns Hopkins University Baltimore Maryland 21218 United States;

    Department of Chemistry University of Wisconsin-Madison Madison Wisconsin 53706 United States;

    Department of Chemistry Johns Hopkins University Baltimore Maryland 21218 United States;

    Department of Chemistry Johns Hopkins University Baltimore Maryland 21218 United States;

    Department of Chemistry University of Wisconsin-Madison Madison Wisconsin 53706 United States;

    Department of Chemistry University of Wisconsin-Madison Madison Wisconsin 53706 United States Departments of Soil Science and Civil & Environmental Engineering University of Wisconsin-Madison Madison Wisconsin 53706 United States;

    Department of Chemistry Johns Hopkins University Baltimore Maryland 21218 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    anaerobic digestion; surface chemistry; nanopartide; biomethane potential tests; ester ification; modified Gompertz model; degree of substitution;

    机译:厌氧消化;表面化学;纳米氨基;生物甲烷潜在的测试;酯IF型;修改了Gompertz模型;替代程度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号