...
首页> 外文期刊>Environmental Science & Technology >Density Functional Investigation of the Water Exchange Reaction on the Gibbsite Surface
【24h】

Density Functional Investigation of the Water Exchange Reaction on the Gibbsite Surface

机译:菱铁矿表面水交换反应的密度泛函研究

获取原文
获取原文并翻译 | 示例
           

摘要

The water exchange reactions on the gibbsite surface have been investigated by density functional calculations (B3LYP/6-31G(d) level) combining the supermolecular model and PCM model in this paper, and the water exchange rate constants on the gibbsite surface have also been predicted. In the proposed reaction pathways, the clusters Al_6(OH)_(18)(H_2O)_6~0 and Al_6(OH)_(12)(H_2O)_(12)~(6+) are used as the models of gibbsite surface and protonated gibbsite surface respectively to examine the effect of protonation of gibbsite surface on the water exchange rate constants. The activation energy barriers △E_s~≠(aq) for Al_6(OH)_(18)(H_2O)_6~0 and Al_6(OH)_(12)(H_2O)_(12)~(6+) are 28.6 and 27.2 kJ mol~(-1), respectively. The reaction energies △E_s(aq) for Al_6(OH)_(18)(H_2O)_6~0 and Al_6(OH)_(12)(H_2O)_(12)~(6+) are 2.9 and 14.4 kJ·mol~(-1), respectively, indicating that hexacoordinate aluminum in the gibbsite surface is more stable. The log k_(TST) for Al_6(OH)_(18)(H_2O)_6~0 and Al_6(OH)_(12)(H_2O)_(12)~(6+) are 6.5 and 7.5 respectively, and the log k_(ex) calculated by the given transmission coefficient for Al_6(OH)_(18)(H_2O)_6~0 and Al_6(OH)_(12)(H_2O)_(12)~(6+) are 2.4 and 3.4 respectively, indicating that the protonation of gibbsite surface promotes the water exchange reaction of gibbsite surface and accelerates the dissolution rate of gibbsite. The relationship between the calculated free energy and experimental rate constants was explored, and according to this relationship, the log k_(ex) for Al_6(OH)_(18)(H_2O)_6~0 and Al_6(OH)_(12)(H_2O)_(12)~(6+) are 2.5 and 3.1 respectively, close to the corresponding values calculated by the given transmission coefficient The water exchange rate constant of gibbsite surface is close to those of K-MAI_(12)(M = Al, Ga, and Ge) polyoxocations, but deviates from that of Al(H_2O)_6~(3+), implying thatthe same reactions with similar structure have similar water exchange rate constants.
机译:结合超分子模型和PCM模型,通过密度泛函计算(B3LYP / 6-31G(d)水平)研究了三水铝石表面的水交换反应,三水铝石表面的水交换速率常数为预料到的。在提出的反应途径中,以团簇Al_6(OH)_(18)(H_2O)_6〜0和Al_6(OH)_(12)(H_2O)_(12)〜(6+)为模型分别对三水铝石表面和质子化三水铝石表面进行考察,以考察三水铝石表面的质子化对水交换速率常数的影响。 Al_6(OH)_(18)(H_2O)_6〜0和Al_6(OH)_(12)(H_2O)_(12)〜(6+)的活化能垒△E_s〜≠(aq)为28.6,分别为27.2 kJ mol〜(-1)。 Al_6(OH)_(18)(H_2O)_6〜0和Al_6(OH)_(12)(H_2O)_(12)〜(6+)的反应能△E_s(aq)为2.9和14.4 kJ· mol〜(-1),表明三水铝石表面的六配位铝更稳定。 Al_6(OH)_(18)(H_2O)_6〜0和Al_6(OH)_(12)(H_2O)_(12)〜(6+)的log k_(TST)分别为6.5和7.5,并且由Al_6(OH)_(18)(H_2O)_6〜0和Al_6(OH)_(12)(H_2O)_(12)〜(6+)的给定传输系数计算的log k_(ex)为2.4, 3.4分别表明,三水铝石表面的质子化促进了三水铝石表面的水交换反应并加速了三水铝石的溶解速度。探索了计算出的自由能与实验速率常数之间的关系,根据该关系,Al_6(OH)_(18)(H_2O)_6〜0和Al_6(OH)_(12)的log k_(ex) (H_2O)_(12)〜(6+)分别为2.5和3.1,接近于由给定的传输系数计算出的相应值。三水铝石表面的水交换速率常数与K-MAI_(12)(M = Al,Ga和Ge)的多氧合反应,但与Al(H_2O)_6〜(3+)的反应不同,这意味着具有相似结构的相同反应具有相似的水交换速率常数。

著录项

  • 来源
    《Environmental Science & Technology》 |2009年第24期|9281-9286|共6页
  • 作者单位

    School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093, China College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China;

    School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093, China College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China;

    School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093, China;

    School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093, China;

    School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093, China;

    School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号