首页> 外文期刊>Physical chemistry chemical physics: PCCP >A quantum mechanical study of water adsorption on the (110) surfaces of rutile SnO2 and TiO2: investigating the effects of intermolecular interactions using hybrid-exchange density functional theory
【24h】

A quantum mechanical study of water adsorption on the (110) surfaces of rutile SnO2 and TiO2: investigating the effects of intermolecular interactions using hybrid-exchange density functional theory

机译:金红石型SnO2和TiO2(110)表面水吸附的量子力学研究:使用混合交换密度泛函理论研究分子间相互作用的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Periodic hybrid-exchange density functional theory calculations are used to explore the first layer of water at model oxide surfaces, which is an important step for understanding the photocatalytic reactions involved in solar water splitting. By comparing the structure and properties of SnO2(110) and TiO2(110) surfaces in contact with water, the effects of structural and electronic differences on the water chemistry are examined. The dissociative adsorption mode at low coverage (1/7 ML) up to monolayer coverage (1 ML) on both SnO2 and TiO2(110) surfaces is analysed. To investigate further the intermolecular interactions between adjacent adsorbates, monolayer adsorption on each surface is explored in terms of binding energies and bond lengths. Analysis of the water adsorption geometry and energetics shows that the relative stability of water adsorption on SnO2(110) is governed largely by the strength of the chemisorption and hydrogen bonds at the surface of the adsorbate-substrate system. However on TiO2(110), a more complicated scenario of the first layer of water on its surface arises in which there is an interplay between chemisorption, hydrogen bonding and adsorbate-induced atomic displacements in the surface. Furthermore the projected density of states of each surface in contact with a mixture of adsorbed water molecules and adsorbed hydroxyls is presented and sheds some light on the nature of the crystalline chemical bonds as well as on why adsorbed water has often been reported to be unstable on rutile SnO2(110).
机译:周期性的混合交换密度泛函理论计算用于探索模型氧化物表面的第一层水,这是理解太阳能分解过程中光催化反应的重要步骤。通过比较SnO2(110)和TiO2(110)与水接触的表面的结构和性能,研究了结构和电子差异对水化学的影响。分析了SnO2和TiO2(110)表面上低覆盖率(1/7 ML)到单层覆盖率(1 ML)的离解吸附模式。为了进一步研究相邻被吸附物之间的分子间相互作用,从结合能和键长的角度探讨了每个表面上的单层吸附。对水吸附几何形状和能量学的分析表明,水在SnO2(110)上的相对吸附稳定性主要受化学吸附强度和被吸附物-基材系统表面氢键的支配。但是,在TiO2(110)上,会出现更复杂的情况,即在其表面上存在第一层水,其中化学吸附,氢键作用和表面上被吸附物引起的原子位移之间存在相互作用。此外,还给出了与吸附的水分子和吸附的羟基的混合物接触的每个表面的预计状态密度,这为晶体化学键的性质以及为什么经常据报道吸附的水不稳定的原因提供了一些启示。金红石型SnO2(110)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号