...
首页> 外文期刊>Environmental Science & Technology >Exposure of Engineered Nanoparticles to Human Lung Epithelial Cells: Influence of Chemical Composition and Catalytic Activity on Oxidative Stress
【24h】

Exposure of Engineered Nanoparticles to Human Lung Epithelial Cells: Influence of Chemical Composition and Catalytic Activity on Oxidative Stress

机译:工程纳米颗粒暴露于人肺上皮细胞:化学成分和催化活性对氧化应激的影响。

获取原文
获取原文并翻译 | 示例
           

摘要

The chemical and catalytic activity of nanoparticles has strongly contributed to the current tremendous interest in engineered nanomaterials and often serves as a guiding principle for the design of functional materials. Since it has most recently become evident that such active materials can enter into cells or organisms, the present study investigates the level of intracellular oxidations after exposure to iron-, cobalt-, manganese-, and titania-containing silica nanoparticles and the corresponding pure oxides in vitro. The resulting oxidative stress was quantitatively measured as the release of reactive oxygen species (ROS). The use of thoroughly characterized nanoparticles of the same morphology, comparable size, shape, and degree of agglomeration allowed separation of physical (rate of particle uptake, agglomeration, sedimentation) and chemical effects (oxidations). Three sets of control experiments elucidated the role of nanoparticles as carriers for heavy metal uptake and excluded a potential interference of the biological assay with the nanomaterial. The present results indicate that the particles could efficiently enter the cells by a Trojan-horse type mechanism which provoked an up to eight times higher oxidative stress in the case of cobalt or manganese if compared to reference cultures exposed to aqueous solutions of the same metals. A systematic investigation on iron-containing nanoparticles as used in industrial fine chemical synthesis demonstrated that the presence of catalytic activity could strongly alter the damaging action of a nanomaterial. This indicates that a proactive development of nanomaterials and their risk assessment should consider chemical and catalytic properties of nanomaterials beyond a mere focus on physical properties such as size, shape, and degree of agglomeration.
机译:纳米粒子的化学和催化活性极大地推动了当前对工程纳米材料的巨大兴趣,并经常充当功能材料设计的指导原则。由于最近发现此类活性物质可以进入细胞或生物体,因此本研究调查了暴露于含铁,钴,锰和二氧化钛的二氧化硅纳米颗粒和相应的纯氧化物后细胞内氧化的水平。体外。定量测定所产生的氧化应激,以释放活性氧(ROS)。使用具有相同形态,相当大小,形状和团聚程度的彻底表征的纳米粒子,可以分离物理(粒子吸收率,团聚,沉淀)和化学作用(氧化)。三组对照实验阐明了纳米颗粒作为重金属吸收载体的作用,并排除了生物测定对纳米材料的潜在干扰。目前的结果表明,该颗粒可以通过特洛伊木马型机制有效进入细胞,与暴露于相同金属水溶液中的参照培养物相比,该机制在钴或锰的情况下可引起高达八倍的氧化应激。对工业精细化学合成中使用的含铁纳米粒子的系统研究表明,催化活性的存在可以极大地改变纳米材料的破坏作用。这表明,纳米材料的积极开发及其风险评估应该考虑纳米材料的化学和催化特性,而不仅仅是关注物理特性,例如尺寸,形状和团聚程度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号