首页> 外文期刊>Fuel >A compact skeletal mechanism of propane towards applications from NTC-affected ignition predictions to CFD-modeled diffusion flames: Comparisons with experiments
【24h】

A compact skeletal mechanism of propane towards applications from NTC-affected ignition predictions to CFD-modeled diffusion flames: Comparisons with experiments

机译:丙烷在从NTC影响的点火预测到CFD模型扩散火焰的应用中的紧凑骨架机制:与实验的比较

获取原文
获取原文并翻译 | 示例
           

摘要

The study aims at proposing a skeletal mechanism of propane oxidation that describes low-temperature combustion and predicts major hydrocarbon product formation in nonpremixed flames. Utilizing a combination of a sensitivity analysis and path flux analysis, we refine and minimize a recently proposed detailed mechanism of UC San Diego (Prince et al., 2017) without empirical adjustments of rate constants for elementary reactions. The skeletal mechanism with 33 species and 122 reactions improves accuracy for autoignition calculations in the negative temperature coefficient region and its size is commensurate to numerical grids used in solutions of computational fluid dynamics with detailed kinetics. For the first time, the previously measured temperature, major products and non-fuel hydrocarbons in diffusion flames of propane associated with counterflow and coflow configurations are, respectively, verified by means of 1-D kinetic modeling and 2-D computational fluid dynamics. A comprehensive analysis of decomposition pathways connected with preserved and removed reactions provides a clear foundation for mechanism developers to build mechanisms of other alkane fuel oxidation. The rate of production analysis interprets how the experimentally measured propene and 1-butene are formed earlier than acetylene and propyne in the coflow flame. Moreover, the present skeletal mechanism, compared with published detailed mechanisms, features a significant reduction in computational cost. (C) 2017 Elsevier Ltd. All rights reserved.
机译:该研究旨在提出丙烷氧化的骨架机理,该机理描述了低温燃烧并预测了非预混火焰中主要的烃产物形成。利用灵敏度分析和路径通量分析的组合,我们对UC San Diego最近提出的详细机制(Prince等人,2017)进行了优化和最小化,而没有对基本反应的速率常数进行经验调整。具有33种反应和122个反应的骨架机制提高了负温度系数区域自燃计算的准确性,其大小与具有详细动力学的计算流体动力学解决方案中使用的数值网格相当。第一次,通过一维动力学模型和二维计算流体动力学分别验证了先前测量的温度,主要产物和丙烷扩散火焰中与逆流和同流构型相关的主要产物和非燃料碳氢化合物。对与保留和除去的反应有关的分解途径的全面分析为机理开发人员建立其他烷烃燃料氧化机理提供了明确的基础。生产率分析解释了在同流火焰中如何比乙炔和丙炔更早地形成实验测量的丙烯和1-丁烯。此外,与已发布的详细机制相比,当前的骨骼机制具有计算成本显着降低的特征。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号